ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral Vortical Effect in Extended Rarita-Schwinger Field Theory and Chiral Anomaly

69   0   0.0 ( 0 )
 نشر من قبل Georgy Prokhorov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the theory of Rarita-Schwinger field interacting with a field with spin 1/2, in the case of finite temperature, chemical potential and vorticity, and calculate the chiral vortical effect for spin 3/2. We have clearly demonstrated the role of interaction with the spin 1/2 field, the contribution of the terms with which to CVE is 6. Since the contribution from the Rarita-Schwinger field is -1, the overall coefficient in CVE is 6-1=5, which corresponds to the recent prediction of a gauge chiral anomaly for spin 3/2. The obtained values for the coefficients $mu^2$ and $T^2$ are proportional to each other, but not proportional to the spin, which indicates a possible new universality between the temperature-related and the chemical potential-related vortical effects. The results obtained allow us to speculate about the relationship between the gauge and gravitational chiral anomalies.

قيم البحث

اقرأ أيضاً

We consider photonic vortical effect, i.e. the difference of the flows of left- and right-handed photons along the vector of angular velocity in rotating photonic medium. Two alternative frameworks to evaluate the effect are considered, both of which have already been tried in the literature. First, the standard thermal fied theory and, alternatively, Hawking-radiation-type derivation. In our earlier attempt to compare the two approaches, we found a crucial factor of two difference. Here we revisit the problem, paying more attention to details of infrared regularizations. We find out that introduction of an infinitesimal mass of the vector field brings the two ways of evaluating the chiral vortical effect into agreement with each other. Some implications, both on the theoretical and phenomenological sides, are mentioned.
We study the chiral vortical effect far from equilibrium in a strongly coupled holographic field theory. Rotation is represented as a perturbation via a gravito-magnetic field on top of a five-dimensional charged AdS Vaidya metric. We also introduce a momentum relaxation mechanism by linear scalar field backgrounds and study the CVE dynamics as function of the charges, temperature and momentum relaxation. The far from equilibrium behavior shows that the CVE builds up with a significant delay in time compared to the quasi instantaneous equilibration of the background metric. We also pay special attention to the effects of the gravitational contribution to the axial anomaly in the CVE of the axial current. We develop an analytic estimate of this delay and also compute the quasi-normal modes near equilibrium which determine the late time ring down.
115 - Shu Lin , Lixin Yang 2018
We study coefficients of axial chiral vortical effect and chiral separation effect at finite temperature and vector chemical potential in massive theories. We present two independent methods of calculating the coefficients: one from field theory and the other using the mass term in axial anomaly equation. An ambiguity in the integration constant similar to hydrodynamic approach to axial chiral vortical effect exists in the latter, but can be fixed naturally in the presence of mass. We obtain perfect agreement between the methods. The results of axial chiral vortical effect and chiral separation effect indicate that the presence of mass generically suppresses the two coefficients, with less suppression at larger chemical potential. For phenomenologically relevant case of quark gluon plasma with three quark flavor, we find the correction is negligible.
We study the instability, for the supersymmetric Yang-Mills (SYM) theories, caused by the external electric field through the imaginary part of the action of the D7 probe brane, which is embedded in the background of type IIB theory. This instability is related to the Schwinger effect, namely to the quark pair production due to the external electric field, for the $SU(N_c)$ SYM theories. In this holographic approach, it is possible to calculate the Schwinger effect for various phases of the theories. Here we give the calculation for ${cal N}=2$ SYM theory and the analysis is extended to the finite temperature deconfinement and the zero temperature confinement phases of the Yang-Mills (YM) theory. By comparing the obtained production rates with the one of the supersymmetric case, the dynamical quark mass is estimated and we find how it varies with the chiral condensate. Based on this analysis, we give a speculation on the extension of the Nambu-Jona-Lasinio model to the finite temperature YM theory, and four fermi coupling is evaluated in the confinement theory.
In the presence of the fluid helicity $boldsymbol{v} cdot boldsymbol{omega}$, the magnetic field induces an electric current of the form $boldsymbol{j} = C_{rm HME} (boldsymbol{v} cdot boldsymbol{omega}) boldsymbol{B}$. This is the helical magnetic e ffect (HME). We show that for massless Dirac fermions with charge $e=1$, the transport coefficient $C_{rm HME}$ is fixed by the chiral anomaly coefficient $C=1/(2pi^2)$ as $C_{rm HME} = C/2$ independently of interactions. We show the conjecture that the coefficient of the magnetovorticity coupling for the local vector charge, $n = C_{B omega} boldsymbol{B} cdot boldsymbol{omega}$, is related to the chiral anomaly coefficient as $C_{B omega} = C/2$. We also discuss the condition for the emergence of the helical plasma instability that originates from the HME.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا