ﻻ يوجد ملخص باللغة العربية
In this work we study vacuum decay and bubble nucleation in models of $f(R)$ higher curvature gravity. Building upon the analysis of Coleman-De Luccia (CDL), we present the formalism to calculate the Euclidean action and the bounce solution for a general $f(R)$ gravity in the thin wall approximation. We calculate the size of the nucleated bubble and the decay exponent for the Starobinsky model and its higher power extensions. We have shown that in the Starobinsky model with a typical potential the nucleated bubble has a larger size in comparison to the CDL bubble and with a lower tunneling rate. However, for higher power extension of the Starobinsky model the size of the bubble and the tunneling exponent can be larger or smaller than the CDL bubble depending on the model parameters. As a counterintuitive example, we have shown that a bubble with a larger size than the CDL bubble but with a higher nucleation rate can be formed in $f(R)$ gravity.
False vacuum decay is a key feature in quantum field theories and exhibits a distinct signature in the early Universe cosmology. It has recently been suggested that the false vacuum decay is catalyzed by a black hole (BH), which might cause the catas
We study large scale structure in the cosmology of Coleman-de Luccia bubble collisions. Within a set of controlled approximations we calculate the effects on galaxy motion seen from inside a bubble which has undergone such a collision. We find that g
We review the effective field theory of modified gravity in which the Lagrangian involves three dimensional geometric quantities appearing in the 3+1 decomposition of space-time. On the flat isotropic cosmological background we expand a general actio
We present the supersymmetric completion of the auxiliary vector modified polynomial $f(R)$ theories in their dual scalar-tensor theory formulation that interpolate between the auxiliary vector modified polynomial $f(R)$ theories and chaotic inflatio
We investigate the linear cosmological perturbations in Hov{r}ava-Lifshitz gravity with a scalar field. Starting from the most general expressions of the metric perturbations as well as that of a canonical scalar field, we decompose the scalar, vecto