ﻻ يوجد ملخص باللغة العربية
We study large scale structure in the cosmology of Coleman-de Luccia bubble collisions. Within a set of controlled approximations we calculate the effects on galaxy motion seen from inside a bubble which has undergone such a collision. We find that generically bubble collisions lead to a coherent bulk flow of galaxies on some part of our sky, the details of which depend on the initial conditions of the collision and redshift to the galaxy in question. With other parameters held fixed the effects weaken as the amount of inflation inside our bubble grows, but can produce measurable flows past the number of efolds required to solve the flatness and horizon problems.
False vacuum decay in quantum mechanical first order phase transitions is a phenomenon with wide implications in cosmology, and presents interesting theoretical challenges. In the standard approach, it is assumed that false vacuum decay proceeds thro
In this work we study vacuum decay and bubble nucleation in models of $f(R)$ higher curvature gravity. Building upon the analysis of Coleman-De Luccia (CDL), we present the formalism to calculate the Euclidean action and the bounce solution for a gen
We extend our previous work on the cosmology of Coleman-de Luccia bubble collisions. Within a set of approximations we calculate the effects on the cosmic microwave background (CMB) as seen from inside a bubble which has undergone such a collision. W
We study scalar bubble collisions in first-order phase transitions focusing on the relativistic limit. We propose trapping equation which describes the wall behavior after collision, and test it with numerical simulations in several setups. We also e
We predict the polarization of cosmic microwave background (CMB) photons that results from a cosmic bubble collision. The polarization is purely E-mode, symmetric around the axis pointing towards the collision bubble, and has several salient features