ﻻ يوجد ملخص باللغة العربية
A subunit in a monoidal category is a subobject of the monoidal unit for which a canonical morphism is invertible. They correspond to open subsets of a base topological space in categories such as those of sheaves or Hilbert modules. We show that under mild conditions subunits endow any monoidal category with a kind of topological intuition: there are well-behaved notions of restriction, localisation, and support, even though the subunits in general only form a semilattice. We develop universal constructions completing any monoidal category to one whose subunits universally form a lattice, preframe, or frame.
The purpose of this note is to show that, if $mathcal{V}$ is a closed monoidal category, the following three notions are equivalent. (1) Category with $mathcal{V}$-structure and cylinder. (2) Tensored $mathcal{V}$-category. (3) Tensor-closed $m
Restriction categories were established to handle maps that are partially defined with respect to composition. Tensor topology realises that monoidal categories have an intrinsic notion of space, and deals with objects and maps that are partially def
We give a proof of a formula for the trace of self-braidings (in an arbitrary channel) in UMTCs which first appeared in the context of rational conformal field theories (CFTs). The trace is another invariant for UMTCs which depends only on modular da
We consider algebras in a modular tensor category C. If the trace pairing of an algebra A in C is non-degenerate we associate to A a commutative algebra Z(A), called the full centre, in a doubled version of the category C. We prove that two simple al
We introduce a notion of $n$-commutativity ($0le nle infty$) for cosimplicial monoids in a symmetric monoidal category ${bf V}$, where $n=0$ corresponds to just cosimplicial monoids in ${bf V,}$ while $n=infty$ corresponds to commutative cosimplicial