ﻻ يوجد ملخص باللغة العربية
We introduce a notion of $n$-commutativity ($0le nle infty$) for cosimplicial monoids in a symmetric monoidal category ${bf V}$, where $n=0$ corresponds to just cosimplicial monoids in ${bf V,}$ while $n=infty$ corresponds to commutative cosimplicial monoids. If ${bf V}$ has a monoidal model structure we show (under some mild technical conditions) that the total object of an $n$-cosimplicial monoid has a natural $E_{n+1}$-algebra structure. Our main applications are to the deformation theory of tensor categories and tensor functors. We show that the deformation complex of a tensor functor is a total complex of a $1$-commutative cosimplicial monoid and, hence, has an $E_2$-algebra structure similar to the $E_2$-structure on Hochschild complex of an associative algebra provided by Delignes conjecture. We further demonstrate that the deformation complex of a tensor category is the total complex of a $2$-commutative cosimplicial monoid and, therefore, is naturally an $E_3$-algebra. We make these structures very explicit through a language of Delannoy paths and their noncommutative liftings. We investigate how these structures manifest themselves in concrete examples.
It is well-known that the pre-2-category $mathscr{C}at_mathrm{dg}^mathrm{coh}(k)$ of small dg categories over a field $k$, with 1-morphisms defined as dg functors, and with 2-morphisms defined as the complexes of coherent natural transformations, fai
This paper addresses the problem of describing the structure of tensor C*-categories M with conjugates and irreducible tensor unit. No assumption on the existence of a braided symmetry or on amenability is made. Our assumptions are motivated by the r
Restriction categories were established to handle maps that are partially defined with respect to composition. Tensor topology realises that monoidal categories have an intrinsic notion of space, and deals with objects and maps that are partially def
We present an algorithm for approximating linear categories of partitions (of sets). We report on concrete computer experiments based on this algorithm which we used to obtain first examples of so-called non-easy linear categories of partitions. All
It is shown that the endomorphism monoids of the category $2mathfrak{Cob}$ of all $2$-cobordisms do not have finitely axiomatizable equational theories. The same holds for the {topological annular category} and various quotients of the latter, like t