ﻻ يوجد ملخص باللغة العربية
Delay differential equations (DDEs) are infinite-dimensional systems, so even a scalar, unforced nonlinear DDE can exhibit chaos. Lyapunov exponents are indicators of chaos and can be computed by comparing the evolution of infinitesimally close trajectories. We convert DDEs into partial differential equations with nonlinear boundary conditions, then into ordinary differential equations (ODEs) using the Galerkin projection. The solution of the resulting ODEs approximates that of the original DDE system; for smooth solutions, the error decreases exponentially as the number of terms used in the Galerkin approximation increases. Examples demonstrate that the strange attractors and Lyapunov exponents of chaotic DDE solutions can be reliably approximated by a smaller number of ODEs using the proposed approach compared to the standard method-of-lines approach, leading to faster convergence and improved computational efficiency.
We establish that the entropy production rate of a classically chaotic Hamiltonian system coupled to the environment settles, after a transient, to a meta-stable value given by the sum of positive generalized Lyapunov exponents. A meta-stable steady
The Kuramoto-Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto-Sivashin
The scaling behavior of the maximal Lyapunov exponent in chaotic systems with time-delayed feedback is investigated. For large delay times it has been shown that the delay-dependence of the exponent allows a distinction between strong and weak chaos,
Chaotic dynamics with sensitive dependence on initial conditions may result in exponential decay of correlation functions. We show that for one-dimensional interval maps the corresponding quantities, that is, Lyapunov exponents and exponential decay
We survey the theory of attractors of nonlinear Hamiltonian partial differential equations since its appearance in 1990. These are results on global attraction to stationary states, to solitons and to stationary orbits, on adiabatic effective dynamic