ﻻ يوجد ملخص باللغة العربية
Sleep slow waves are known to participate in memory consolidation, yet slow waves occurring under anesthesia present no positive effects on memory. Here, we shed light onto this paradox, based on a combination of extracellular recordings in vivo, in vitro, and computational models. We find two types of slow waves, based on analyzing the temporal patterns of successive slow-wave events. The first type is consistently observed in natural slow-wave sleep, while the second is shown to be ubiquitous under anesthesia. Network models of spiking neurons predict that the two slow wave types emerge due to a different gain on inhibitory vs excitatory cells and that different levels of spike-frequency adaptation in excitatory cells can account for dynamical distinctions between the two types. This prediction was tested in vitro by varying adaptation strength using an agonist of acetylcholine receptors, which demonstrated a neuromodulatory switch between the two types of slow waves. Finally, we show that the first type of slow-wave dynamics is more sensitive to external stimuli, which can explain how slow waves in sleep and anesthesia differentially affect memory consolidation, as well as provide a link between slow-wave dynamics and memory diseases.
The frequency-specific coupling mechanism of the functional human brain networks underpins its complex cognitive and behavioral functions. Nevertheless, it is not well unveiled what are the frequency-specific subdivisions and network topologies of th
Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus properties. It has been argued that synchronized oscillations contribute to these gamma-band activity [... however,] even when oscillations
In this paper the method and performance data of Boundary Element Method (BEM)-based SMS-LORETA (Simultaneous Multiple Sources LORETA) are presented. According to these data the method is capable of locating efficiently multiple simultaneously active
Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remain
Oscillations are a hallmark of neural population activity in various brain regions with a spectrum covering a wide range of frequencies. Within this spectrum gamma oscillations have received particular attention due to their ubiquitous nature and to