ترغب بنشر مسار تعليمي؟ اضغط هنا

Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep

120   0   0.0 ( 0 )
 نشر من قبل Alain Destexhe
 تاريخ النشر 2012
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up to 160 single units), the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices). In this case, the avalanches defined from nLFPs displayed power-law scaling in double log representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using more reliable cumulative distribution functions (CDF) and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.



قيم البحث

اقرأ أيضاً

The frequency-specific coupling mechanism of the functional human brain networks underpins its complex cognitive and behavioral functions. Nevertheless, it is not well unveiled what are the frequency-specific subdivisions and network topologies of th e human brain. In this study, we estimated functional connectivity of the human cerebral cortex using spectral connection, and conducted frequency-specific parcellation using eigen-clustering and gradient-based methods, and then explored their topological structures. 7T fMRI data of 184 subjects in the HCP dataset were used for parcellation and exploring the topological properties of the functional networks, and 3T fMRI data of another 890 subjects were used to confirm the stability of the frequency-specific topologies. Seven to ten functional networks were stably integrated by two to four dissociable hub categories at specific frequencies, and we proposed an intrinsic functional atlas containing 456 parcels according to the parcellations across frequencies. The results revealed that the functional networks contained stable frequency-specific topologies, which may imply more abundant roles of the functional units and more complex interactions among them.
Local field potentials (LFPs) sampled with extracellular electrodes are frequently used as a measure of population neuronal activity. However, relating such measurements to underlying neuronal behaviour and connectivity is non-trivial. To help study this link, we developed the Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX). We first identified a reduced neuron model that retained the spatial and frequency filtering characteristics of extracellular potentials from neocortical neurons. We then developed VERTEX as an easy-to-use Matlab tool for simulating LFPs from large populations (>100 000 neurons). A VERTEX-based simulation successfully reproduced features of the LFPs from an in vitro multi-electrode array recording of macaque neocortical tissue. Our model, with virtual electrodes placed anywhere in 3D, allows direct comparisons with the in vitro recording setup. We envisage that VERTEX will stimulate experimentalists, clinicians, and computational neuroscientists to use models to understand the mechanisms underlying measured brain dynamics in health and disease.
During slow-wave sleep, the brain is in a self-organized regime in which slow oscillations (SOs) between up- and down-states propagate across the cortex. We address the mechanism of how SOs emerge and can recruit large parts of the brain using a whol e-brain model based on empirical connectivity data. Individual brain areas generate SOs that are induced by a local adaptation mechanism. Optimal fits to human resting-state fMRI data and EEG during deep sleep are found at critical values of the adaptation strength where the model produces a balance between local and global SOs with realistic spatiotemporal statistics. Local oscillations are more frequent, last shorter, and have a lower amplitude. Global oscillations spread as waves of silence across the brain, traveling from anterior to posterior regions due to the heterogeneous network structure of the human brain. Our results demonstrate the utility of whole-brain models for explaining the origin of large-scale cortical oscillations and how they are shaped by the connectome.
We propose a single chunk model of long-term memory that combines the basic features of the ACT-R theory and the multiple trace memory architecture. The pivot point of the developed theory is a mathematical description of the creation of new memory t races caused by learning a certain fragment of information pattern and affected by the fragments of this pattern already retained by the current moment of time. Using the available psychological and physiological data these constructions are justified. The final equation governing the learning and forgetting processes is constructed in the form of the differential equation with the Caputo type fractional time derivative. Several characteristic situations of the learning (continuous and discontinuous) and forgetting processes are studied numerically. In particular, it is demonstrated that, first, the learning and forgetting exponents of the corresponding power laws of the memory fractional dynamics should be regarded as independent system parameters. Second, as far as the spacing effects are concerned, the longer the discontinuous learning process, the longer the time interval within which a subject remembers the information without its considerable lost. Besides, the latter relationship is a linear proportionality.
Sleep slow waves are known to participate in memory consolidation, yet slow waves occurring under anesthesia present no positive effects on memory. Here, we shed light onto this paradox, based on a combination of extracellular recordings in vivo, in vitro, and computational models. We find two types of slow waves, based on analyzing the temporal patterns of successive slow-wave events. The first type is consistently observed in natural slow-wave sleep, while the second is shown to be ubiquitous under anesthesia. Network models of spiking neurons predict that the two slow wave types emerge due to a different gain on inhibitory vs excitatory cells and that different levels of spike-frequency adaptation in excitatory cells can account for dynamical distinctions between the two types. This prediction was tested in vitro by varying adaptation strength using an agonist of acetylcholine receptors, which demonstrated a neuromodulatory switch between the two types of slow waves. Finally, we show that the first type of slow-wave dynamics is more sensitive to external stimuli, which can explain how slow waves in sleep and anesthesia differentially affect memory consolidation, as well as provide a link between slow-wave dynamics and memory diseases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا