ﻻ يوجد ملخص باللغة العربية
We have recently introduced in paper I an extension of the Ruffini-Arguelles-Rueda (RAR) model for the distribution of DM in galaxies, by including for escape of particle effects. Being built upon self-gravitating fermions at finite temperatures, the RAR solutions develop a characteristic textit{dense quantum core-diluted halo} morphology which, for fermion masses in the range $mc^2 approx 10-345$ keV, was shown to provide good fits to the Milky Way rotation curve. We study here for the first time the applicability of the extended RAR model to other structures from dwarfs to ellipticals to galaxy clusters, pointing out the relevant case of $mc^2 = 48$ keV. By making a full coverage of the remaining free parameters of the theory, and for each galactic structure, we present a complete family of astrophysical RAR profiles which satisfy realistic halo boundary conditions inferred from observations. Each family-set of RAR solutions predicts given windows of total halo masses and central quantum-core masses, the latter opening the interesting possibility to interpret them as alternatives either to intermediate-mass BHs (for dwarf galaxies), or to supermassive BHs (SMBHs, in the case of larger galaxy types). The model is shown to be in good agreement with different observationally inferred scaling relations such as: (1) the Ferrarese relation connecting DM halos with supermassive dark central objects; and (2) the nearly constant DM surface density of galaxies. Finally, the theory provides a natural mechanism for the formation of SMBHs of few $10^8 M_odot$ via the gravitational collapse of unstable DM quantum-cores.
The neutrino minimal standard model ($ u$MSM) has been tightly constrained in the recent years, either from dark matter (DM) production or from X-ray and small-scale observations. However, current bounds on sterile neutrino DM can be significantly mo
Dark matter-baryon scaling relations in galaxies are important in order to constrain galaxy formation models. Here, we provide a modern quantitative assessment of those relations, by modelling the rotation curves of galaxies from the Spitzer Photomet
We calculate the most stringent constraints up to date on the parameter space for sterile neutrino warm dark matter models possessing a radiative decay channel into X-rays. These constraints arise from the X-ray flux observations from the Galactic ce
The mass assembly history of the Milky Way can inform both theory of galaxy formation and the underlying cosmological model. Thus, observational constraints on the properties of both its baryonic and dark matter contents are sought. Here we show that
Constraining the sub-galactic matter-power spectrum on 1-10 kpc scales would make it possible to distinguish between the concordance $Lambda$CDM model and various alternative dark-matter models due to the significantly different levels of predicted m