ترغب بنشر مسار تعليمي؟ اضغط هنا

Reuse and Adaptation for Entity Resolution through Transfer Learning

697   0   0.0 ( 0 )
 نشر من قبل Saravanan Thirumuruganathan
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Entity resolution (ER) is one of the fundamental problems in data integration, where machine learning (ML) based classifiers often provide the state-of-the-art results. Considerable human effort goes into feature engineering and training data creation. In this paper, we investigate a new problem: Given a dataset D_T for ER with limited or no training data, is it possible to train a good ML classifier on D_T by reusing and adapting the training data of dataset D_S from same or related domain? Our major contributions include (1) a distributed representation based approach to encode each tuple from diverse datasets into a standard feature space; (2) identification of common scenarios where the reuse of training data can be beneficial; and (3) five algorithms for handling each of the aforementioned scenarios. We have performed comprehensive experiments on 12 datasets from 5 different domains (publications, movies, songs, restaurants, and books). Our experiments show that our algorithms provide significant benefits such as providing superior performance for a fixed training data size.



قيم البحث

اقرأ أيضاً

Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called match ing dependencies (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating three components of ER: (a) Classifiers for duplicate/non-duplicate record pairs built using machine learning (ML) techniques, (b) MDs for supporting both the blocking phase of ML and the merge itself; and (c) The use of the declarative language LogiQL -an extended form of Datalog supported by the LogicBlox platform- for data processing, and the specification and enforcement of MDs.
Entity resolution (ER), an important and common data cleaning problem, is about detecting data duplicate representations for the same external entities, and merging them into single representations. Relatively recently, declarative rules called match ing dependencies (MDs) have been proposed for specifying similarity conditions under which attribute values in database records are merged. In this work we show the process and the benefits of integrating four components of ER: (a) Building a classifier for duplicate/non-duplicate record pairs built using machine learning (ML) techniques; (b) Use of MDs for supporting the blocking phase of ML; (c) Record merging on the basis of the classifier results; and (d) The use of the declarative language LogiQL -an extended form of Datalog supported by the LogicBlox platform- for all activities related to data processing, and the specification and enforcement of MDs.
Probabilistic databases play a preeminent role in the processing and management of uncertain data. Recently, many database research efforts have integrated probabilistic models into databases to support tasks such as information extraction and labeli ng. Many of these efforts are based on batch oriented inference which inhibits a realtime workflow. One important task is entity resolution (ER). ER is the process of determining records (mentions) in a database that correspond to the same real-world entity. Traditional pairwise ER methods can lead to inconsistencies and low accuracy due to localized decisions. Leading ER systems solve this problem by collectively resolving all records using a probabilistic graphical model and Markov chain Monte Carlo (MCMC) inference. However, for large datasets this is an extremely expensive process. One key observation is that, such exhaustive ER process incurs a huge up-front cost, which is wasteful in practice because most users are interested in only a small subset of entities. In this paper, we advocate pay-as-you-go entity resolution by developing a number of query-driven collective ER techniques. We introduce two classes of SQL queries that involve ER operators --- selection-driven ER and join-driven ER. We implement novel variations of the MCMC Metropolis Hastings algorithm to generate biased samples and selectivity-based scheduling algorithms to support the two classes of ER queries. Finally, we show that query-driven ER algorithms can converge and return results within minutes over a database populated with the extraction from a newswire dataset containing 71 million mentions.
Entity resolution (ER) is the problem of identifying and merging records that refer to the same real-world entity. In many scenarios, raw records are stored under heterogeneous environment. Specifically, the schemas of records may differ from each ot her. To leverage such records better, most existing work assume that schema matching and data exchange have been done to convert records under different schemas to those under a predefined schema. However, we observe that schema matching would lose information in some cases, which could be useful or even crucial to ER. To leverage sufficient information from heterogeneous sources, in this paper, we address several challenges of ER on heterogeneous records and show that none of existing similarity metrics or their transformations could be applied to find similar records under heterogeneous settings. Motivated by this, we design the similarity function and propose a novel framework to iteratively find records which refer to the same entity. Regarding efficiency, we build an index to generate candidates and accelerate similarity computation. Evaluations on real-world datasets show the effectiveness and efficiency of our methods.
Accurate and efficient entity resolution is an open challenge of particular relevance to intelligence organisations that collect large datasets from disparate sources with differing levels of quality and standard. Starting from a first-principles for mulation of entity resolution, this paper presents a novel Entity Resolution algorithm that introduces a data-driven blocking and record-linkage technique based on the probabilistic identification of entity signatures in data. The scalability and accuracy of the proposed algorithm are evaluated using benchmark datasets and shown to achieve state-of-the-art results. The proposed algorithm can be implemented simply on modern parallel databases, which allows it to be deployed with relative ease in large industrial applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا