ترغب بنشر مسار تعليمي؟ اضغط هنا

Nilmanifolds and their associated non local fields

135   0   0.0 ( 0 )
 نشر من قبل Juan Villarreal Ph.D.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For six dimensional nilmanifolds we build a module $mathcal{H}$ of an affine Kac Moody vertex algebras. Then, we associate some logarithmic fields for the module $mathcal{H}$ and we study their singularities. We also presented a physics motivation behind this construction. We study a particular case, we show that when the nilmanifold $N$ is a $k$ degree $S^1$--fibration over the two torus and a choice of $l in mathbb{Z} simeq H^3(N, mathbb{Z})$ the fields associated to the space $mathcal{H}$ have tri-logarithm singularities whenever $kl eq 0$.

قيم البحث

اقرأ أيضاً

In the Lagrangian approach to 2-dimensional sigma models, B-fields and D-branes contribute topological terms to the action of worldsheets of both open and closed strings. We show that these terms naturally fit into a 2-dimensional, smooth open-closed functorial field theory (FFT) in the sense of Atiyah, Segal, and Stolz-Teichner. We give a detailed construction of this smooth FFT, based on the definition of a suitable smooth bordism category. In this bordism category, all manifolds are equipped with a smooth map to a spacetime target manifold. Further, the object manifolds are allowed to have boundaries; these are the endpoints of open strings stretched between D-branes. The values of our FFT are obtained from the B-field and its D-branes via transgression. Our construction generalises work of Bunke-Turner-Willerton to include open strings. At the same time, it generalises work of Moore-Segal about open-closed TQFTs to include target spaces. We provide a number of further features of our FFT: we show that it depends functorially on the B-field and the D-branes, we show that it is thin homotopy invariant, and we show that it comes equipped with a positive reflection structure in the sense of Freed-Hopkins. Finally, we describe how our construction is related to the classification of open-closed TQFTs obtained by Lauda-Pfeiffer.
We characterize the Lie derivative of spinor fields from a variational point of view by resorting to the theory of the Lie derivative of sections of gauge-natural bundles. Noether identities from the gauge-natural invariance of the first variational derivative of the Einstein(--Cartan)--Dirac Lagrangian provide restrictions on the Lie derivative of fields.
147 - Bindu A. Bambah 2003
A way to construct and classify the three dimensional polynomially deformed algebras is given and the irreducible representations is presented. for the quadratic algebras 4 different algebras are obtained and for cubic algebras 12 different classes a re constructed. Applications to quantum mechanical systems including supersymmetric quantum mechanics are discussed
A nilmanifold is a (left) quotient of a nilpotent Lie group by a cocompact lattice. A hypercomplex structure on a manifold is a triple of complex structure operators satisfying the quaternionic relations. A hypercomplex nilmanifold is a compact quoti ent of a nilpotent Lie group equipped with a left-invariant hypercomplex structure. Such a manifold admits a whole 2-dimensional sphere $S^2$ of complex structures induced by quaternions. We prove that for any hypercomplex nilmanifold $M$ and a generic complex structure $Lin S^2$, the complex manifold $(M,L)$ has algebraic dimension 0. A stronger result is proven when the hypercomplex nilmanifold is abelian. Consider the Lie algebra of left-invariant vector fields of Hodge type (1,0) on the corresponding nilpotent Lie group with respect to some complex structure $Iin S^2$. A hypercomplex nilmanifold is called abelian when this Lie algebra is abelian. We prove that all complex subvarieties of $(M,L)$ for generic $Lin S^2$ on a hypercomplex abelian nilmanifold are also hypercomplex nilmanifolds.
We study singularity formation in spherically symmetric solutions of the charge-one and charge-two sector of the (2+1)-dimensional S^2 sigma-model and the (4+1)-dimensional Yang-Mills model, near the adiabatic limit. These equations are non-integrabl e, and so studies are performed numerically on rotationally symmetric solutions using an iterative finite differencing scheme that is numerically stable. We evaluate the accuracy of predictions made with the geodesic approximation. We find that the geodesic approximation is extremely accurate for the charge-two sigma-model and the Yang-Mills model, both of which exhibit fast blowup. The charge-one sigma-model exhibits slow blowup. There the geodesic approximation must be modified by applying an infrared cutoff that depends on initial conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا