ﻻ يوجد ملخص باللغة العربية
For six dimensional nilmanifolds we build a module $mathcal{H}$ of an affine Kac Moody vertex algebras. Then, we associate some logarithmic fields for the module $mathcal{H}$ and we study their singularities. We also presented a physics motivation behind this construction. We study a particular case, we show that when the nilmanifold $N$ is a $k$ degree $S^1$--fibration over the two torus and a choice of $l in mathbb{Z} simeq H^3(N, mathbb{Z})$ the fields associated to the space $mathcal{H}$ have tri-logarithm singularities whenever $kl eq 0$.
In the Lagrangian approach to 2-dimensional sigma models, B-fields and D-branes contribute topological terms to the action of worldsheets of both open and closed strings. We show that these terms naturally fit into a 2-dimensional, smooth open-closed
We characterize the Lie derivative of spinor fields from a variational point of view by resorting to the theory of the Lie derivative of sections of gauge-natural bundles. Noether identities from the gauge-natural invariance of the first variational
A way to construct and classify the three dimensional polynomially deformed algebras is given and the irreducible representations is presented. for the quadratic algebras 4 different algebras are obtained and for cubic algebras 12 different classes a
A nilmanifold is a (left) quotient of a nilpotent Lie group by a cocompact lattice. A hypercomplex structure on a manifold is a triple of complex structure operators satisfying the quaternionic relations. A hypercomplex nilmanifold is a compact quoti
We study singularity formation in spherically symmetric solutions of the charge-one and charge-two sector of the (2+1)-dimensional S^2 sigma-model and the (4+1)-dimensional Yang-Mills model, near the adiabatic limit. These equations are non-integrabl