ﻻ يوجد ملخص باللغة العربية
We discuss a method to construct Dirac-harmonic maps developed by J.~Jost, X.~Mo and M.~Zhu in J.~Jost, X.~Mo, M.~Zhu, emph{Some explicit constructions of Dirac-harmonic maps}, J. Geom. Phys. textbf{59} (2009), no. 11, 1512--1527.The method uses harmonic spinors and twistor spinors, and mainly applies to Dirac-harmonic maps of codimension $1$ with target spaces of constant sectional curvature.Before the present article, it remained unclear when the conditions of the theorems in J.~Jost, X.~Mo, M.~Zhu, emph{Some explicit constructions of Dirac-harmonic maps}, J. Geom. Phys. textbf{59} (2009), no. 11, 1512--1527, were fulfilled. We show that for isometric immersions into spaceforms, these conditions are fulfilled only under special assumptions.In several cases we show the existence of solutions.
We prove Liouville theorems for Dirac-harmonic maps from the Euclidean space $R^n$, the hyperbolic space $H^n$ and a Riemannian manifold $mathfrak{S^n}$ ($ngeq 3$) with the Schwarzschild metric to any Riemannian manifold $N$.
We consider minimizing harmonic maps $u$ from $Omega subset mathbb{R}^n$ into a closed Riemannian manifold $mathcal{N}$ and prove: (1) an extension to $n geq 4$ of Almgren and Liebs linear law. That is, if the fundamental group of the target manifo
We consider half-harmonic maps from $mathbb{R}$ (or $mathbb{S}$) to $mathbb{S}$. We prove that all (finite energy) half-harmonic maps are non-degenerate. In other words, they are integrable critical points of the energy functional. A full description
The paper was withdrawn due to a gap in the proof of Lemma 3.
We extend the results of our recent preprint [arXiv: 1811.00515] into higher dimensions $n geq 4$. For minimizing harmonic maps $uin W^{1,2}(Omega,mathbb{S}^2)$ from $n$-dimensional domains into the two dimensional sphere we prove: (1) An extension