ترغب بنشر مسار تعليمي؟ اضغط هنا

On the size of the singular set of minimizing harmonic maps into the 2-sphere in dimension four and higher

136   0   0.0 ( 0 )
 نشر من قبل Katarzyna Mazowiecka
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the results of our recent preprint [arXiv: 1811.00515] into higher dimensions $n geq 4$. For minimizing harmonic maps $uin W^{1,2}(Omega,mathbb{S}^2)$ from $n$-dimensional domains into the two dimensional sphere we prove: (1) An extension of Almgren and Liebs linear law, namely [mathcal{H}^{n-3}(textrm{sing} u) le C int_{partial Omega} | abla_T u|^{n-1} ,dmathcal{H}^{n-1};] (2) An extension of Hardt and Lins stability theorem, namely that the size of singular set is stable under small perturbations in $W^{1,n-1}$ norm of the boundary.

قيم البحث

اقرأ أيضاً

We consider minimizing harmonic maps $u$ from $Omega subset mathbb{R}^n$ into a closed Riemannian manifold $mathcal{N}$ and prove: (1) an extension to $n geq 4$ of Almgren and Liebs linear law. That is, if the fundamental group of the target manifo ld $mathcal{N}$ is finite, we have [ mathcal{H}^{n-3}(textrm{sing } u) le C int_{partial Omega} | abla_T u|^{n-1} ,d mathcal{H}^{n-1}; ] (2) an extension of Hardt and Lins stability theorem. Namely, assuming that the target manifold is $mathcal{N}=mathbb{S}^2$ we obtain that the singular set of $u$ is stable under small $W^{1,n-1}$-perturbations of the boundary data. In dimension $n=3$ both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space $W^{s,p}$ with $s in (frac{1}{2},1]$ and $p in [2,infty)$ satisfying $sp geq 2$. We also discuss sharpness.
In this article, we improve the partial regularity theory for minimizing $1/2$-harmonic maps in the case where the target manifold is the $(m-1)$-dimensional sphere. For $mgeq 3$, we show that minimizing $1/2$-harmonic maps are smooth in dimension 2, and have a singular set of codimension at least 3 in higher dimensions. For $m=2$, we prove that, up to an orthogonal transformation, $x/|x|$ is the unique non trivial $0$-homogeneous minimizing $1/2$-harmonic map from the plane into the circle $mathbb{S}^1$. As a corollary, each point singularity of a minimizing $1/2$-harmonic maps from a 2d domain into $mathbb{S}^1$ has a topological charge equal to $pm1$.
This article addresses the regularity issue for minimizing fractional harmonic maps of order $sin(0,1/2)$ from an interval into a smooth manifold. Holder continuity away from a locally finite set is established for a general target. If the target is the standard sphere, then Holder continuity holds everywhere.
We construct finite time blow-up solutions to the 2-dimensional harmonic map flow into the sphere $S^2$, begin{align*} u_t & = Delta u + | abla u|^2 u quad text{in } Omegatimes(0,T) u &= varphi quad text{on } partial Omegatimes(0,T) u(cdot,0) &= u_ 0 quad text{in } Omega , end{align*} where $Omega$ is a bounded, smooth domain in $mathbb{R}^2$, $u: Omegatimes(0,T)to S^2$, $u_0:barOmega to S^2$ is smooth, and $varphi = u_0big|_{partialOmega}$. Given any points $q_1,ldots, q_k$ in the domain, we find initial and boundary data so that the solution blows-up precisely at those points. The profile around each point is close to an asymptotically singular scaling of a 1-corrotational harmonic map. We build a continuation after blow-up as a $H^1$-weak solution with a finite number of discontinuities in space-time by reverse bubbling, which preserves the homotopy class of the solution after blow-up.
This paper is devoted to the asymptotic analysis of a fractional version of the Ginzburg-Landau equation in bounded domains, where the Laplacian is replaced by an integro-differential operator related to the square root Laplacian as defined in Fourie r space. In the singular Ginzburg-Landau limit, we show that solutions with uniformly bounded energy converge weakly to sphere valued 1/2-harmonic maps, i.e., the fractional analogues of the usual harmonic maps. In addition, the convergence holds in smooth functions spaces away from a (n-1)-rectifiable closed set of finite (n-1)-Hausdorff measure. The proof relies on the representation of the square root Laplacian as a Dirichlet-to-Neumann operator in one more dimension, and on the analysis of a boundary version of the Ginzburg-Landau equation. Besides the analysis of the fractional Ginzburg-Landau equation, we also give a general partial regularity result for stationary 1/2-harmonic maps in arbitrary dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا