ﻻ يوجد ملخص باللغة العربية
Radio observations grant access to a wide range of physical processes through different emission mechanisms. These processes range from thermal and quiescent to eruptive phenomena, such as shock waves and particle beams. We present a new synthetic radio imaging tool that calculates and visualizes the Bremsstrahlung radio emission. This tool works concurrently with state-of-the-art Magnetohydrodynamic (MHD) simulations of the solar corona using the code BATS-R-US. Our model produces results that are in good agreement with both high and low frequency observations of the solar disk. In this study, a ray-tracing algorithm is used and the radio intensity is computed along the actual curved ray trajectories. We illustrate the importance of refraction in locating the radio emitting source by comparison of the radio imaging illustrations when the line-of-sight instead of the refracted paths are considered. We are planning to incorporate non-thermal radio emission mechanisms in a future version of the radio imaging tool.
We present first results of a solar radio event observed with the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) at metric wavelengths. We examine a complex event consisting of multiple radio sources/bursts associated with a fast cor
We investigate the relationship between the main acceleration phase of coronal mass ejections (CMEs) and the particle acceleration in the associated flares as evidenced in RHESSI non-thermal X-rays for a set of 37 impulsive flare-CME events. CME peak
Solar flares and coronal mass ejections (CMEs) are closely coupled through magnetic reconnection. CMEs are usually accelerated impulsively within the low solar corona, synchronized with the impulsive flare energy release. We investigate the dynamic e
Magnetic reconnection plays an integral part in nearly all models of solar flares and coronal mass ejections (CMEs). The reconnection heats and accelerates the plasma, produces energetic electrons and ions, and changes the magnetic topology to form m
Coronal mass ejections (CMEs) are often accompanied by coronal dimming evident in extreme ultraviolet (EUV) and soft X-ray observations. The locations of dimming are sometimes considered to map footpoints of the erupting flux rope. As the emitting ma