ترغب بنشر مسار تعليمي؟ اضغط هنا

The Origins Space Telescope (OST) Mission Concept Study Interim Report

106   0   0.0 ( 0 )
 نشر من قبل David Leisawitz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Origins Space Telescope (OST) will transform our understanding of the Universe, from formation of the earliest galaxies to the creation of habitable worlds. OSTs Mission Concept 1, the subject of this report, features a cold (4 K) large-aperture telescope (9.1 m) and five powerful instruments, providing imaging and spectroscopy over a wavelength range from 5 to 660 microns. OSTs dramatic increase in sensitivity over previous missions ensures breakthrough discoveries in a broad range of astrophysics disciplines.

قيم البحث

اقرأ أيضاً

The Origins Space Telescope (Origins) traces our cosmic history, from the formation of the first galaxies and the rise of metals to the development of habitable worlds and present-day life. Origins does this through exquisite sensitivity to infrared radiation from ions, atoms, molecules, dust, water vapor and ice, and observations of extra-solar planetary atmospheres, protoplanetary disks, and large-area extragalactic fields. Origins operates in the wavelength range 2.8 to 588 microns and is 1000 times more sensitive than its predecessors due to its large, cold (4.5 K) telescope and advanced instruments. Origins was one of four large missions studied by the community with support from NASA and industry in preparation for the 2020 Decadal Survey in Astrophysics. This is the final study report.
64 - B. Scott Gaudi 2018
For the first time in human history, technologies have matured sufficiently to enable a mission capable of discovering and characterizing habitable planets like Earth orbiting sunlike stars other than the Sun. At the same time, such a platform would enable unique science not possible from ground-based facilities. This science is broad and exciting, ranging from new investigations of our own solar system to a full range of astrophysics disciplines. The Habitable Exoplanet Observatory, or HabEx, is one of four studies currently being undertaken by NASA in preparation for the 2020 Astrophysics Decadal Survey. HabEx has been designed to be the Great Observatory of the 2030s, with community involvement through a competed and funded Guest Observer (GO) program. This interim report describes the HabEx baseline concept, which is a space-based 4-meter diameter telescope mission concept with ultraviolet (UV), optical, and near-infrared (near-IR) imaging and spectroscopy capabilities. More information on HabEx can be found at https://www.jpl.nasa.gov/habex
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of di scovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.
In December 2010, NASA created a Science Definition Team (SDT) for WFIRST, the Wide Field Infra-Red Survey Telescope, recommended by the Astro 2010 Decadal Survey as the highest priority for a large space mission. The SDT was chartered to work with t he WFIRST Project Office at GSFC and the Program Office at JPL to produce a Design Reference Mission (DRM) for WFIRST. This paper describes an Interim DRM. The DRM will be completed in 2012.
The Origins Space Telescope, one of four large Mission Concept studies sponsored by NASA for review in the 2020 US Astrophysics Decadal Survey, will open unprecedented discovery space in the infrared, unveiling our cosmic origins. We briefly describe in this article the key science themes and architecture for OST. With a sensitivity gain of up to a factor of 1,000 over any previous or planned mission, OST will open unprecedented discovery space, allow us to peer through an infrared window teeming with possibility. OST will fundamentally change our understanding of our cosmic origins - from the growth of galaxies and black holes, to uncovering the trail of water, to life signs in nearby Earth-size planets, and discoveries never imagined. Built to be highly adaptable, while addressing key science across many areas of astrophysics, OST will usher in a new era of infrared astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا