ترغب بنشر مسار تعليمي؟ اضغط هنا

A Comparison of Frequency Downshift Models of Wave Trains on Deep Water

66   0   0.0 ( 0 )
 نشر من قبل John Carter
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Frequency downshift (FD) in wave trains on deep water occurs when a measure of the frequency, typically the spectral peak or the spectral mean, decreases as the waves travel down a tank or across the ocean. Many FD models rely on wind or wave breaking. We consider seven models that do not include these effects and compare their predictions with four sets of experiments that also do not include these effects. The models are the (i) nonlinear Schrodinger equation (NLS), (ii) dissipative NLS equation (dNLS), (iii) Dysthe equation, (iv) viscous Dysthe equation (vDysthe), (v) Gordon equation (Gordon) (which has a free parameter), (vi) Islas-Schober equation (IS) (which has a free parameter), and (vii) a new model, the dissipative Gramstad-Trulsen (dGT) equation. The dGT equation has no free parameters and addresses some of the difficulties associated with the Dysthe and vDysthe equations. We compare a measure of overall error and the evolution of the spectral amplitudes, mean, and peak. We find: (i) The NLS and Dysthe equations do not accurately predict the measured spectral amplitudes. (ii) The Gordon equation, which is a successful model of FD in optics, does not accurately model FD in water waves, regardless of the choice of free parameter. (iii) The dNLS, vDysthe, dGT, and IS (with optimized free parameter) models all do a reasonable job predicting the measured spectral amplitudes, but none captures all spectral evolutions. (iv) The vDysthe, dGT, and IS (with optimized free parameter) models do the best at predicting the observed evolution of the spectral peak and the spectral mean. (v) The IS model, optimized over its free parameter, has the smallest overall error for three of the four experiments. The vDysthe equation has the smallest overall error in the other experiment.



قيم البحث

اقرأ أيضاً

361 - J.D. Carter , A. Govan 2015
In this paper, we derive a viscous generalization of the Dysthe (1979) system from the weakly viscous generalization of the Euler equations introduced by Dias, Dyachenko, and Zakharov (2008). This viscous Dysthe system models the evolution of a weakl y viscous, nearly monochromatic wave train on deep water. It contains a term which provides a mechanism for frequency downshifting in the absence of wind and wave breaking. The equation does not preserve the spectral mean. Numerical simulations demonstrate that the spectral mean typically decreases and that the spectral peak decreases for certain initial conditions. The linear stability analysis of the plane-wave solutions of the viscous Dysthe system demonstrates that waves with wave numbers closer to zero decay more slowly than waves with wave numbers further from zero. Comparisons between experimental data and numerical simulations of the NLS, dissipative NLS, Dysthe, and viscous Dysthe systems establish that the viscous Dysthe system accurately models data from experiments in which frequency downshifting was observed and experiments in which frequency downshift was not observed.
We present an extensive numerical comparison of a family of balance models appropriate to the semi-geostrophic limit of the rotating shallow water equations, and derived by variational asymptotics in Oliver (2006) for small Rossby numbers ${mathrm{Ro }}$. This family of generalized large-scale semi-geostrophic (GLSG) models contains the $L_1$-model introduced by Salmon (1983) as a special case. We use these models to produce balanced initial states for the full shallow water equations. We then numerically investigate how well these models capture the dynamics of an initially balanced shallow water flow. It is shown that, whereas the $L_1$-member of the GLSG family is able to reproduce the balanced dynamics of the full shallow water equations on time scales of ${mathcal{O}}(1/{mathrm{Ro}})$ very well, all other members develop significant unphysical high wavenumber contributions in the ageostrophic vorticity which spoil the dynamics.
74 - John D. Carter 2017
Hammack & Segur (1978) conducted a series of surface water-wave experiments in which the evolution of long waves of depression was measured and studied. This present work compares time series from these experiments with predictions from numerical sim ulations of the KdV, Serre, and five unidirectional and bidirectional Whitham-type equations. These comparisons show that the most accurate predictions come from models that contain accurate reproductions of the Euler phase velocity, sufficient nonlinearity, and surface tension effects. The main goal of this paper is to determine how accurately the bidirectional Whitham equations can model data from real-world experiments of waves on shallow water. Most interestingly, the unidirectional Whitham equation including surface tension provides the most accurate predictions for these experiments. If the initial horizontal velocities are assumed to be zero (the velocities were not measured in the experiments), the three bidirectional Whitham systems examined herein provide approximations that are significantly more accurate than the KdV and Serre equations. However, they are not as accurate as predictions obtained from the unidirectional Whitham equation.
One-dimensional numerical simulations based on hybrid Eulerian-Lagrangian approach are performed to investigate the interactions between propagating shock waves and dispersed evaporating water droplets in two-phase gas-droplet flows. Two-way coupling for interphase exchanges of mass, momentum and energy is adopted. Parametric study on shock attenuation, droplet evaporation, motion and heating is conducted, through considering various initial droplet diameters (5-20 {mu}m), number densities (2.5 x 1011 - 2 x 1012 1/m3) and incident shock Mach numbers (1.17-1.9). It is found that the leading shock may be attenuated to sonic wave and even subsonic wave when droplet volume fraction is large and/or incident shock Mach number is low. Attenuation in both strength and propagation speed of the leading shock is mainly caused by momentum transfer to the droplets that interact at the shock front. Total pressure recovery is observed in the evaporation region, whereas pressure loss results from shock compression, droplet drag and pressure gradient force behind the shock front. Recompression of the region between the leading shock and two-phase contact surface is observed when the following compression wave is supersonic. After a critical point, this region gets stable in width and interphase exchanges in mass, momentum, and energy. However, the recompression phenomenon is sensitive to droplet volume fraction and may vanish with high droplet loading. For an incident shock Mach number of 1.6, recompression only occurs when the initial droplet volume fraction is below 3.28 x 10-5.
In this paper, we describe a numerical method to solve numerically the weakly dispersive fully nonlinear Serre-Green-Naghdi (SGN) celebrated model. Namely, our scheme is based on reliable finite volume methods, proven to be very effective for the hyp erbolic part of equations. The particularity of our study is that we develop an adaptive numerical model using moving grids. Moreover, we use a special form of the SGN equations where non-hydrostatic part of pressure is found by solving a nonlinear elliptic equation. Moreover, this form of governing equations allows determining the natural form of boundary conditions to obtain a well-posed (numerical) problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا