ﻻ يوجد ملخص باللغة العربية
We have performed $^{119}$Sn-NMR measurements on the antiperovskite oxide superconductor Sr$_{3-x}$SnO to investigate how its normal state changes with the Sr deficiency. A two-peak structure was observed in the NMR spectra of all the measured samples. This suggests that the phase separation tends to occur between the nearly stoichiometric and heavily Sr-deficient Sr$_{3-x}$SnO phases. The measurement of the nuclear spin-lattice relaxation rate $1/T_1$ indicates that the Sr-deficient phase shows a conventional metallic behavior due to the heavy hole doping. In contrast, the nearly stoichiometric phase exhibits unusual temperature dependence of $1/T_1$, attributable to the presence of a Dirac-electron band.
A large variety of perovskite oxide superconductors are known, including some of the most prominent high-temperature and unconventional superconductors. However, superconductivity among the oxidation state inverted material class, the antiperovskite
We report a $mu$SR study on the antiperovskite oxide superconductor Sr$_{3-x}$SnO. With transverse-field $mu$SR, we observed the increase of the muon relaxation rate upon cooling below the superconducting transition temperature $T_{mathrm{c}}=5.4$ K,
We report the temperature variation of the $^{119}$Sn-M{o}ssbauer spectra of the antiperovskite (inverse perovskite) oxide superconductor Sr$_{3-x}$SnO. Both superconductive (Sr-deficient) and non-superconductive (nearly stoichiometric) samples exhib
A rapid decrease in the critical current density (Jc) of YBa2Cu3O7-x (YBCO) films with increasing film thickness has been observed for multiple YBCO growth processes. While such behavior is predicted from 2D collective pinning models under certain as
We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on powders of the new LaO1-xFxFeAs superconductor for x = 0 and x = 0.1 at temperatures up to 480 K, and compare our measured NQR spec