ﻻ يوجد ملخص باللغة العربية
A large variety of perovskite oxide superconductors are known, including some of the most prominent high-temperature and unconventional superconductors. However, superconductivity among the oxidation state inverted material class, the antiperovskite oxides, was reported just recently for the first time. In this superconductor, Sr$_{3-x}$SnO, the unconventional ionic state Sn$^{4-}$ is realized and possible unconventional superconductivity due to a band inversion has been discussed. Here, we discuss an improved facile synthesis method, making it possible to control the strontium deficiency in Sr$_{3-x}$SnO. Additionally, a synthesis method above the melting point of Sr$_{3}$SnO is presented. We show temperature dependence of magnetization and electrical resistivity for superconducting strontium deficient Sr$_{3-x}$SnO ($T_{mathrm{c}}$ ~ 5 K) and for Sr$_{3}$SnO without a superconducting transition down to 0.15 K. Further, we reveal a significant effect of strontium raw material purity on the superconductivity and achieve 40% increased superconducting volume fraction (~100%) compared to the highest value reported so far. More detailed characterisation utilising powder X-ray diffraction and energy-dispersive X-ray spectroscopy show that a minor cubic phase, previously suggested to be a Sr$_{3-x}$SnO, is SrO. The improved characterization and controlled synthesis reported herein enable detailed investigations on the superconducting nature and its dependency on the strontium deficiency in Sr$_{3-x}$SnO.
We have performed $^{119}$Sn-NMR measurements on the antiperovskite oxide superconductor Sr$_{3-x}$SnO to investigate how its normal state changes with the Sr deficiency. A two-peak structure was observed in the NMR spectra of all the measured sample
We report a $mu$SR study on the antiperovskite oxide superconductor Sr$_{3-x}$SnO. With transverse-field $mu$SR, we observed the increase of the muon relaxation rate upon cooling below the superconducting transition temperature $T_{mathrm{c}}=5.4$ K,
SrTiO$_{3}$, a quantum paraelectric, becomes a metal with a superconducting instability after removal of an extremely small number of oxygen atoms. It turns into a ferroelectric upon substitution of a tiny fraction of strontium atoms with calcium. Th
The results of heat capacity C_p(T, H) and electrical resistivity rho(T,H) measurements down to 0.35 K as well as muon spin relaxation and rotation (muSR) measurements on a noncentrosymmetric superconductor LaIrSi3 are presented. Powder neutron diffr
Superconductors with topological surface or edge states have been intensively explored for the prospect of realizing Majorana bound states, which obey non-Abelian statistics and are crucial for topological quantum computation. The traditional routes