ترغب بنشر مسار تعليمي؟ اضغط هنا

Autonomous Deep Learning: Incremental Learning of Denoising Autoencoder for Evolving Data Streams

192   0   0.0 ( 0 )
 نشر من قبل Mahardhika Pratama Dr
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The generative learning phase of Autoencoder (AE) and its successor Denosing Autoencoder (DAE) enhances the flexibility of data stream method in exploiting unlabelled samples. Nonetheless, the feasibility of DAE for data stream analytic deserves in-depth study because it characterizes a fixed network capacity which cannot adapt to rapidly changing environments. An automated construction of a denoising autoeconder, namely deep evolving denoising autoencoder (DEVDAN), is proposed in this paper. DEVDAN features an open structure both in the generative phase and in the discriminative phase where input features can be automatically added and discarded on the fly. A network significance (NS) method is formulated in this paper and is derived from the bias-variance concept. This method is capable of estimating the statistical contribution of the network structure and its hidden units which precursors an ideal state to add or prune input features. Furthermore, DEVDAN is free of the problem- specific threshold and works fully in the single-pass learning fashion. The efficacy of DEVDAN is numerically validated using nine non-stationary data stream problems simulated under the prequential test-then-train protocol where DEVDAN is capable of delivering an improvement of classification accuracy to recently published online learning works while having flexibility in the automatic extraction of robust input features and in adapting to rapidly changing environments.

قيم البحث

اقرأ أيضاً

The Denoising Autoencoder (DAE) enhances the flexibility of the data stream method in exploiting unlabeled samples. Nonetheless, the feasibility of DAE for data stream analytic deserves an in-depth study because it characterizes a fixed network capac ity that cannot adapt to rapidly changing environments. Deep evolving denoising autoencoder (DEVDAN), is proposed in this paper. It features an open structure in the generative phase and the discriminative phase where the hidden units can be automatically added and discarded on the fly. The generative phase refines the predictive performance of the discriminative model exploiting unlabeled data. Furthermore, DEVDAN is free of the problem-specific threshold and works fully in the single-pass learning fashion. We show that DEVDAN can find competitive network architecture compared with state-of-the-art methods on the classification task using ten prominent datasets simulated under the prequential test-then-train protocol.
This letter introduces a new denoiser that modifies the structure of denoising autoencoder (DAE), namely noise learning based DAE (nlDAE). The proposed nlDAE learns the noise of the input data. Then, the denoising is performed by subtracting the rege nerated noise from the noisy input. Hence, nlDAE is more effective than DAE when the noise is simpler to regenerate than the original data. To validate the performance of nlDAE, we provide three case studies: signal restoration, symbol demodulation, and precise localization. Numerical results suggest that nlDAE requires smaller latent space dimension and smaller training dataset compared to DAE.
When concept drift is detected during classification in a data stream, a common remedy is to retrain a frameworks classifier. However, this loses useful information if the classifier has learnt the current concept well, and this concept will recur ag ain in the future. Some frameworks retain and reuse classifiers, but it can be time-consuming to select an appropriate classifier to reuse. These frameworks rarely match the accuracy of state-of-the-art ensemble approaches. For many data stream tasks, speed is important: fast, accurate frameworks are needed for time-dependent applications. We propose the Enhanced Concept Profiling Framework (ECPF), which aims to recognise recurring concepts and reuse a classifier trained previously, enabling accurate classification immediately following a drift. The novelty of ECPF is in how it uses similarity of classifications on new data, between a new classifier and existing classifiers, to quickly identify the best classifier to reuse. It always trains both a new classifier and a reused classifier, and retains the more accurate classifier when concept drift occurs. Finally, it creates a copy of reused classifiers, so a classifier well-suited for a recurring concept will not be impacted by being trained on a different concept. In our experiments, ECPF classifies significantly more accurately than a state-of-the-art classifier reuse framework (Diversity Pool) and a state-of-the-art ensemble technique (Adaptive Random Forest) on synthetic datasets with recurring concepts. It classifies real-world datasets five times faster than Diversity Pool, and six times faster than Adaptive Random Forest and is not significantly less accurate than either.
This study proposes a framework for human-like autonomous car-following planning based on deep reinforcement learning (deep RL). Historical driving data are fed into a simulation environment where an RL agent learns from trial and error interactions based on a reward function that signals how much the agent deviates from the empirical data. Through these interactions, an optimal policy, or car-following model that maps in a human-like way from speed, relative speed between a lead and following vehicle, and inter-vehicle spacing to acceleration of a following vehicle is finally obtained. The model can be continuously updated when more data are fed in. Two thousand car-following periods extracted from the 2015 Shanghai Naturalistic Driving Study were used to train the model and compare its performance with that of traditional and recent data-driven car-following models. As shown by this study results, a deep deterministic policy gradient car-following model that uses disparity between simulated and observed speed as the reward function and considers a reaction delay of 1s, denoted as DDPGvRT, can reproduce human-like car-following behavior with higher accuracy than traditional and recent data-driven car-following models. Specifically, the DDPGvRT model has a spacing validation error of 18% and speed validation error of 5%, which are less than those of other models, including the intelligent driver model, models based on locally weighted regression, and conventional neural network-based models. Moreover, the DDPGvRT demonstrates good capability of generalization to various driving situations and can adapt to different drivers by continuously learning. This study demonstrates that reinforcement learning methodology can offer insight into driver behavior and can contribute to the development of human-like autonomous driving algorithms and traffic-flow models.
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcem ent learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا