ﻻ يوجد ملخص باللغة العربية
In this paper, a boundary value problem for a singularly perturbed linear system of two second order ordinary differential equations of convection- diffusion type is considered on the interval [0, 1]. The components of the solution of this system exhibit boundary layers at 0. A numerical method composed of an upwind finite difference scheme applied on a piecewise uniform Shishkin mesh is suggested to solve the problem. The method is proved to be first order convergent in the maximum norm uniformly in the perturbation parameters. Numerical examples are provided in support of the theory.
In this paper, by employing the asymptotic method, we prove the existence and uniqueness of a smoothing solution for a singularly perturbed Partial Differential Equation (PDE) with a small parameter. As a by-product, we obtain a reduced PDE model wit
A two-step preconditioned iterative method based on the Hermitian/Skew-Hermitian splitting is applied to the solution of nonsymmetric linear systems arising from the Finite Element approximation of convection-diffusion equations. The theoretical spec
We study the weak finite element method solving convection-diffusion equations. A weak finite element scheme is presented based on a spacial variational form. We established a weak embedding inequality that is very useful in the weak finite element a
We consider singularly perturbed convection-diffusion equations on one-dimensional networks (metric graphs) as well as the transport problems arising in the vanishing diffusion limit. Suitable coupling condition at inner vertices are derived that gua
We present a Petrov-Gelerkin (PG) method for a class of nonlocal convection-dominated diffusion problems. There are two main ingredients in our approach. First, we define the norm on the test space as induced by the trial space norm, i.e., the optima