ترغب بنشر مسار تعليمي؟ اضغط هنا

A parameter uniform fitted mesh method for a weakly coupled system of two singularly perturbed convection-diffusion equations

112   0   0.0 ( 0 )
 نشر من قبل John J H Miller Dr
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a boundary value problem for a singularly perturbed linear system of two second order ordinary differential equations of convection- diffusion type is considered on the interval [0, 1]. The components of the solution of this system exhibit boundary layers at 0. A numerical method composed of an upwind finite difference scheme applied on a piecewise uniform Shishkin mesh is suggested to solve the problem. The method is proved to be first order convergent in the maximum norm uniformly in the perturbation parameters. Numerical examples are provided in support of the theory.



قيم البحث

اقرأ أيضاً

In this paper, by employing the asymptotic method, we prove the existence and uniqueness of a smoothing solution for a singularly perturbed Partial Differential Equation (PDE) with a small parameter. As a by-product, we obtain a reduced PDE model wit h vanished high order derivative terms, which is close to the original PDE model in any order of this small parameter in the whole domain except a negligible transition layer. Based on this reduced forward model, we propose an efficient two step regularization algorithm for solving inverse source problems governed by the original PDE. Convergence rate results are studied for the proposed regularization algorithm, which shows that this simplification will not (asymptotically) decrease the accuracy of the inversion result when the measurement data contains noise. Numerical examples for both forward and inverse problems are given to show the efficiency of the proposed numerical approach.
A two-step preconditioned iterative method based on the Hermitian/Skew-Hermitian splitting is applied to the solution of nonsymmetric linear systems arising from the Finite Element approximation of convection-diffusion equations. The theoretical spec tral analysis focuses on the case of matrix sequences related to FE approximations on uniform structured meshes, by referring to spectral tools derived from Toeplitz theory. In such a setting, if the problem is coercive, and the diffusive and convective coefficients are regular enough, then the proposed preconditioned matrix sequence shows a strong clustering at unity, i.e., a superlinear preconditioning sequence is obtained. Under the same assumptions, the optimality of the PHSS method is proved and some numerical experiments confirm the theoretical results. Tests on unstructured meshes are also presented, showing the some convergence behavior.
125 - Tie Zhang , Yanli Chen 2015
We study the weak finite element method solving convection-diffusion equations. A weak finite element scheme is presented based on a spacial variational form. We established a weak embedding inequality that is very useful in the weak finite element a nalysis. The optimal order error estimates are derived in the discrete $H^1$-norm, the $L_2$-norm and the $L_infty$-norm, respectively. In particular, the $H^1$-superconvergence of order $k+2$ is given under certain condition. Finally, numerical examples are provided to illustrate our theoretical analysis
We consider singularly perturbed convection-diffusion equations on one-dimensional networks (metric graphs) as well as the transport problems arising in the vanishing diffusion limit. Suitable coupling condition at inner vertices are derived that gua rantee conservation of mass as well as dissipation of a mathematical energy which allows us to prove stability and well-posedness. For single intervals and appropriately specified initial conditions, it is well-known that the solutions of the convection-diffusion problem converge to that of the transport problem with order $O(sqrt{epsilon})$ in the $L^infty(L^2)$-norm with diffusion $epsilon to 0$. In this paper, we prove a corresponding result for problems on one-dimensional networks. The main difficulty in the analysis is that the number and type of coupling conditions changes in the singular limit which gives rise to additional boundary layers at the interior vertices of the network. Since the values of the solution at these network junctions are not known a-priori, the asymptotic analysis requires a delicate choice of boundary layer functions that allows to handle these interior layers.
We present a Petrov-Gelerkin (PG) method for a class of nonlocal convection-dominated diffusion problems. There are two main ingredients in our approach. First, we define the norm on the test space as induced by the trial space norm, i.e., the optima l test norm, so that the inf-sup condition can be satisfied uniformly independent of the problem. We show the well-posedness of a class of nonlocal convection-dominated diffusion problems under the optimal test norm with general assumptions on the nonlocal diffusion and convection kernels. Second, following the framework of Cohen et al.~(2012), we embed the original nonlocal convection-dominated diffusion problem into a larger mixed problem so as to choose an enriched test space as a stabilization of the numerical algorithm. In the numerical experiments, we use an approximate optimal test norm which can be efficiently implemented in 1d, and study its performance against the energy norm on the test space. We conduct convergence studies for the nonlocal problem using uniform $h$- and $p$-refinements, and adaptive $h$-refinements on both smooth manufactured solutions and solutions with sharp gradient in a transition layer. In addition, we confirm that the PG method is asymptotically compatible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا