ترغب بنشر مسار تعليمي؟ اضغط هنا

Middle multiplicative convolution and hypergeometric equations

272   0   0.0 ( 0 )
 نشر من قبل Nicolas Martin
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Nicolas Martin




اسأل ChatGPT حول البحث

Using a relation due to Katz linking up additive and multiplicative convolutions, we make explicit the behaviour of some Hodge invariants by middle multiplicative convolution, following [DS13] and [Mar18a] in the additive case. Moreover, the main theorem gives a new proof of a result of Fedorov computing the Hodge invariants of hypergeometric equations.



قيم البحث

اقرأ أيضاً

96 - Nicolas Martin 2018
Following an article of Dettweiler and Sabbah, this article studies the behaviour of various Hodge invariants by middle additive convolution with a Kummer module. The main result gives the behaviour of the nearby cycle local Hodge numerical data at i nfinity. We also give expressions for Hodge numbers and degrees of some Hodge bundles without making the hypothesis of scalar monodromy at infinity, which generalizes the resultsof Dettweiler and Sabbah.
We collect evidence in support of a conjecture of Griffiths, Green and Kerr on the arithmetic of extension classes of limiting mixed Hodge structures arising from semistable degenerations over a number field. After briefly summarizing how a result of Iritani implies this conjecture for a collection of hypergeometric Calabi-Yau threefold examples studied by Doran and Morgan, the authors investigate a sequence of (non-hypergeometric) examples in dimensions 1 through 6 arising from Katzs theory of the middle convolution. A crucial role is played by the Mumford-Tate group (of type G2) of the family of 6-folds, and the theory of boundary components of Mumford-Tate domains.
We give a $q$-analog of middle convolution for linear $q$-difference equations with rational coefficients. In the differential case, middle convolution is defined by Katz, and he examined properties of middle convolution in detail. In this paper, we define a $q$-analog of middle convolution. Moreover, we show that it also can be expressed as a $q$-analog of Euler transformation. The $q$-middle convolution transforms Fuchsian type equation to Fuchsian type equation and preserves rigidity index of $q$-difference equations.
In this work we detail the application of a fast convolution algorithm computing high dimensional integrals to the context of multiplicative noise stochastic processes. The algorithm provides a numerical solution to the problem of characterizing cond itional probability density functions at arbitrary time, and we applied it successfully to quadratic and piecewise linear diffusion processes. The ability in reproducing statistical features of financial return time series, such as thickness of the tails and scaling properties, makes this processes appealing for option pricing. Since exact analytical results are missing, we exploit the fast convolution as a numerical method alternative to the Monte Carlo simulation both in objective and risk neutral settings. In numerical sections we document how fast convolution outperforms Monte Carlo both in velocity and efficiency terms.
In this note, it is proved the existence of an infinitely generated multiplicative group consisting of entire functions that are, except for the constant function 1, hypercyclic with respect to the convolution operator associated to a given entire fu nction of subexponential type. A certain stability under multiplication is also shown for compositional hypercyclicity on complex domains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا