ﻻ يوجد ملخص باللغة العربية
By measuring the transmission of near-resonant light through an atomic vapor confined in a nano-cell we demonstrate a mesoscopic optical response arising from the non-locality induced by the motion of atoms with a phase coherence length larger than the cell thickness. Whereas conventional dispersion theory -- where the local atomic response is simply convolved by the Maxwell-Boltzmann velocity distribution -- is unable to reproduce the measured spectra, a model including a non-local, size-dependent susceptibility is found to be in excellent agreement with the measurements. This result improves our understanding of light-matter interaction in the mesoscopic regime and has implications for applications where mesoscopic effects may degrade or enhance the performance of miniaturized atomic sensors.
We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the sigma+ component of an 18 GHz
Strongly interacting atom-cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum netw
We report the observation of double-quantum coherence signals in a gas of potassium atoms at twice the frequency of the one-quantum coherences. Since a single atom does not have a state at the corresponding energy, this observation must be attributed
We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided li
We present a method for recovery of narrow homogeneous spectral features out of broad inhomogeneous overlapped profile based on second-derivative processing of the absorption spectra of alkali metal atomic vapor nanocells. The method is shown to pres