ﻻ يوجد ملخص باللغة العربية
Distinguishing between arguments and adjuncts of a verb is a longstanding, nontrivial problem. In natural language processing, argumenthood information is important in tasks such as semantic role labeling (SRL) and prepositional phrase (PP) attachment disambiguation. In theoretical linguistics, many diagnostic tests for argumenthood exist but they often yield conflicting and potentially gradient results. This is especially the case for syntactically oblique items such as PPs. We propose two PP argumenthood prediction tasks branching from these two motivations: (1) binary argument-adjunct classification of PPs in VerbNet, and (2) gradient argumenthood prediction using human judgments as gold standard, and report results from prediction models that use pretrained word embeddings and other linguistically informed features. Our best results on each task are (1) $acc.=0.955$, $F_1=0.954$ (ELMo+BiLSTM) and (2) Pearsons $r=0.624$ (word2vec+MLP). Furthermore, we demonstrate the utility of argumenthood prediction in improving sentence representations via performance gains on SRL when a sentence encoder is pretrained with our tasks.
Humans acquire language continually with much more limited access to data samples at a time, as compared to contemporary NLP systems. To study this human-like language acquisition ability, we present VisCOLL, a visually grounded language learning tas
Open-domain question answering can be reformulated as a phrase retrieval problem, without the need for processing documents on-demand during inference (Seo et al., 2019). However, current phrase retrieval models heavily depend on sparse representatio
Mobile devices use language models to suggest words and phrases for use in text entry. Traditional language models are based on contextual word frequency in a static corpus of text. However, certain types of phrases, when offered to writers as sugges
In our previous work we demonstrated that a single headed attention encoder-decoder model is able to reach state-of-the-art results in conversational speech recognition. In this paper, we further improve the results for both Switchboard 300 and 2000.
As language models are trained on ever more text, researchers are turning to some of the largest corpora available. Unlike most other types of datasets in NLP, large unlabeled text corpora are often presented with minimal documentation, and best prac