ﻻ يوجد ملخص باللغة العربية
Electron-boson coupling plays a key role in superconductivity for many systems. However, in copper-based high-temperature ($T_c$) superconductors, its relation to superconductivity remains controversial despite strong spectroscopic fingerprints. Here we use angle-resolved photoemission spectroscopy to find a striking correlation between the superconducting gap and the bosonic coupling strength near the Brillouin zone boundary in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. The bosonic coupling strength rapidly increases from the overdoped Fermi-liquid regime to the optimally doped strange metal, concomitant with the quadrupled superconducting gap and the doubled gap-to-Tc ratio across the pseudogap boundary. This synchronized lattice and electronic response suggests that the effects of electronic interaction and the electron-phonon coupling become intimately entangled upon entering the strange metal regime, which may in turn drive a stronger superconductivity.
The lattice dynamics in Sr$_2$RuO$_4$ has been studied by inelastic neutron scattering combined with shell-model calculations. The in-plane bond-stretching modes in Sr$_2$RuO$_4$ exhibit a normal dispersion in contrast to all electronically doped per
Antiferromagnetism (AF) such as Neel ordering is often closely related to Coulomb interactions such as Hubbard repulsion in two-dimensional (2D) systems. Whether Neel AF ordering in 2D can be dominantly induced by electron-phonon couplings (EPC) has
We examine multiple techniques for extracting information from angle-resolved photoemission spectroscopy (ARPES) data, and test them against simulated spectral functions for electron-phonon coupling. We find that, in the low-coupling regime, it is po
Cuprate superconductors host a multitude of low-energy optical phonons. Using time- and angle-resolved photoemission spectroscopy, we study coherent phonons in Bi$_{2}$Sr$_{2}$Ca$_{0.92}$Y$_{0.08}$Cu$_{2}$O$_{8+delta}$. Sub-meV modulations of the ele
The temperature dependence of peak widths in high resolution angle-resolved photoelectron spectroscopy from quantum well states in ultra thin Ag films on V(100) has been used to determine the electron-phonon coupling constant, lambda, for films of th