ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of time profiles for the magnetic transport of cold atoms

236   0   0.0 ( 0 )
 نشر من قبل Aurelien Perrin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thomas Badr




اسأل ChatGPT حول البحث

We have compared different time profiles for the trajectory of the centre of a quadrupole magnetic trap designed for the transport of cold sodium atoms. Our experimental observations show that a smooth profile characterized by an analytical expression involving the error function minimizes the transport duration while limiting atom losses and heating of the trapped gas. Using numerical calculations of single atom classical trajectories within the trap, we show that this observation can be qualitatively interpreted as a trade-off between two types of losses: finite depth of the confinement and Majorana spin flips.



قيم البحث

اقرأ أيضاً

Transporting cold atoms between distant sections of a vacuum system is a central ingredient in many quantum simulation experiments, in particular in setups, where a large optical access and precise control over magnetic fields is needed. In this work , we demonstrate optical transport of cold cesium atoms over a total transfer distance of about $43,$cm in less than $30,$ms. The high speed is facilitated by a moving lattice, which is generated via the interference of a Bessel and a Gaussian laser beam. We transport about $3times 10^6$ atoms at a temperature of a few $mu$K with a transport efficiency of about $75%$. We provide a detailed study of the transport efficiency for different accelerations and lattice depths and find that the transport efficiency is mainly limited by the potential depth along the direction of gravity. To highlight the suitability of the optical-transport setup for quantum simulation experiments, we demonstrate the generation of a pure Bose-Einstein condensate with about $2times 10^4$ atoms. We find a robust final atom number within $2%$ over a duration of $2.5,$h with a standard deviation of $<5%$ between individual experimental realizations.
189 - Daniel Babik 2019
The implementation of the fractional quantum Hall effect in ultracold atomic quantum gases remains, despite substantial advances in the field, a major challenge. Since atoms are electrically neutral, a key ingredient is the generation of sufficiently strong artificial gauge fields. Here we theoretically investigate the synthetization of such fields for bosonic erbium atoms by phase imprinting with two counterpropagating optical Raman beams. Given the nonvanishing orbital angular momentum of the rare-earth atomic species erbium in the electronic ground state and the availability of narrow-line transitions, heating from photon scattering is expected to be lower than in atomic alkali-metal species. We give a parameter regime for which strong synthetic magnetic fields with good spatial homogeneity are predicted. We also estimate the size of the Laughlin gap expected from the s-wave contribution of the interactions for typical experimental parameters of a two-dimensional atomic erbium microcloud. Our analysis shows that cold rare-earth atomic ensembles are highly attractive candidate systems for experimental explorations of the fractional quantum Hall regime.
116 - Xinyu Luo , Lingna Wu , Jiyao Chen 2014
We present a general scheme for synthesizing a spatially periodic magnetic field, or a magnetic lattice (ML), for ultracold atoms using pulsed gradient magnetic fields. Both the period and the depth of the artificial ML can be tuned, immune to atomic spontaneous emission often encountered in optical lattices. The effective Hamiltonian for our 2-dimensional ML has not been discussed previously in condensed matter physics. Its band structures show interesting features which can support topologically nontrivial phases. The technical requirements for implementing our protocol are readily available in todays cold atom experiments. Realization of our proposal will significantly expand the repertoire for quantum simulation with ultracold atoms.
We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultra-cold bosonic atoms in a double well optical lattice through slow and periodic modulation of the lattice parameters (intra- and inter-well t unneling, chemical potential, etc.). The transport of atoms does not depend on the rate of change of the parameters (as along as the change is slow) and can distribute atoms in optical lattices at the quantized level without involving external forces. The transport of atoms depends on the atom filling in each double well and the interaction between atoms. In the strongly interacting region, the bosonic atoms share the same transport properties as non-interacting fermions with quantized transport at the half filling and no atom transport at the integer filling. In the weakly interacting region, the number of the transported atoms is proportional to the atom filling. We show the signature of the quantum transport from the momentum distribution of atoms that can measured in the time of flight image. A semiclassical transport model is developed to explain the numerically observed transport of bosonic atoms in the non-interacting and strongly interacting limits. The scheme may serve as an quantized battery for atomtronics applications.
118 - Y.Nakamura , T.Sunaga , M.Mine 2009
The non-Markoffian transport equations for the systems of cold Bose atoms confined by a external potential both without and with a Bose-Einstein condensate are derived in the framework of nonequilibrium thermal filed theory (Thermo Field Dynamics). O ur key elements are an explicit particle representation and a self-consistent renormalization condition which are essential in thermal field theory. The non-Markoffian transport equation for the non-condensed system, derived at the two-loop level, is reduced in the Markoffian limit to the ordinary quantum Boltzmann equation derived in the other methods. For the condensed system, we derive a new transport equation with an additional collision term which becomes important in the Landau instability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا