ﻻ يوجد ملخص باللغة العربية
The non-Markoffian transport equations for the systems of cold Bose atoms confined by a external potential both without and with a Bose-Einstein condensate are derived in the framework of nonequilibrium thermal filed theory (Thermo Field Dynamics). Our key elements are an explicit particle representation and a self-consistent renormalization condition which are essential in thermal field theory. The non-Markoffian transport equation for the non-condensed system, derived at the two-loop level, is reduced in the Markoffian limit to the ordinary quantum Boltzmann equation derived in the other methods. For the condensed system, we derive a new transport equation with an additional collision term which becomes important in the Landau instability.
By using the coherent backscattering interference effect, we investigate experimentally and theoretically how coherent transport of light inside a cold atomic vapour is affected by the residual motion of atomic scatterers. As the temperature of the a
We present a detailed derivation of a multi-site mean-field theory (MSMFT) used to describe the Mott-insulator to superfluid transition of bosonic atoms in optical lattices. The approach is based on partitioning the lattice into small clusters which
We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultra-cold bosonic atoms in a double well optical lattice through slow and periodic modulation of the lattice parameters (intra- and inter-well t
Transporting cold atoms between distant sections of a vacuum system is a central ingredient in many quantum simulation experiments, in particular in setups, where a large optical access and precise control over magnetic fields is needed. In this work
We have compared different time profiles for the trajectory of the centre of a quadrupole magnetic trap designed for the transport of cold sodium atoms. Our experimental observations show that a smooth profile characterized by an analytical expressio