ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system

61   0   0.0 ( 0 )
 نشر من قبل Chong Chen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The exceptional points of non-Hermitian systems, where $n$ different energy eigenstates merge into an identical one, have many intriguing properties that have no counterparts in Hermitian systems. In particular, the $epsilon^{1/n}$ dependence of the energy level splitting on a perturbative parameter $epsilon$ near an $n$-th order exceptional point stimulates the idea of metrology with arbitrarily high sensitivity, since the susceptibility $depsilon^{1/n}/depsilon$ diverges at the exceptional point. Here we theoretically study the sensitivity of parameter estimation near the exceptional points, using the exact formalism of quantum Fisher information. The quantum Fisher information formalism allows the highest sensitivity to be determined without specifying a specific measurement approach. We find that the exceptional point bears no dramatic enhancement of the sensitivity. Instead, the coalescence of the eigenstates exactly counteracts the eigenvalue susceptibility divergence and makes the sensitivity a smooth function of the perturbative parameter.



قيم البحث

اقرأ أيضاً

102 - X. Z. Zhang , G. Zhang , 2018
We systematically study the topology of the exceptional point (EP) in the finite non-Hermitian system. Based on the concrete form of the Berry connection, we demonstrate that the exceptional line (EL), at which the eigenstates coalesce, can act as a vortex filament. The direction of the EL can be identified by the corresponding Berry curvature. In this context, such a correspondence makes the topology of the EL clear at a glance. As an example, we apply this finding to the non-Hermitian Rice-Mele (RM) model, the non-Hermiticity of which arises from the staggered on-site complex potential. The boundary ELs are topological, but the non-boundary ELs are not. Each non-boundary EL corresponds to two critical momenta that make opposite contributions to the Berry connection. Therefore, the Berry connection of the many-particle quantum state can have classical correspondence, which is determined merely by the boundary ELs. Furthermore, the non-zero Berry phase, which experiences a closed path in the parameter space, is dependent on how the curve surrounds the boundary EL. This also provides an alternative way to investigate the topology of the EP and its physical correspondence in a finite non-Hermitian system.
61 - Wanxia Cao , Xingda Lu , Xin Meng 2019
Recent advances in non-Hermitian physical systems have led to numerous novel optical phenomena and applications. However, most realizations are limited to classical systems and quantum fluctuations of light is unexplored. For the first time, we repor t the observation of quantum correlations between light channels in an anti-symmetric optical system made of flying atoms. Two distant optical channels coupled dissipatively, display gain, phase sensitivity and quantum correlations with each other, even under linear atom-light interaction within each channel. We found that quantum correlations emerge in the phase unbroken regime and disappears after crossing the exceptional point. Our microscopic model considering quantum noise evolution produces results in good qualitative agreement with experimental observations. This work opens up a new direction of experimental quantum nonlinear optics using non-Hermitian systems, and demonstrates the viability of nonlinear coupling with linear systems by using atomic motion as feedback.
66 - X. M. Yang , Z. Song 2019
We investigate a non-Hermitian extension of Kitaev chain by considering imaginary $p$-wave pairing amplitudes. The exact solution shows that the phase diagram consists two phases with real and complex Bogoliubov-de-gens spectra, associated with $mat hcal{PT}$-symmetry breaking, which is separated by a hyperbolic exceptional line. The exceptional points (EPs) correspond to a specific Cooper pair state $( 1+c_{k}^{dagger }c_{-k}^{dagger }) leftvert 0rightrangle $ with movable $k$ when the parameters vary along the exceptional line. The non-Hermiticity around EP supports resonant generation of such a pair state from the vacuum state $% leftvert 0rightrangle $ of fermions via the critical dynamic process. In addition, we propose a scheme to generate a superconducting state through a dynamic method.
The quantum Fisher information constrains the achievable precision in parameter estimation via the quantum Cramer-Rao bound, which has attracted much attention in Hermitian systems since the 60s of the last century. However, less attention has been p aid to non-Hermitian systems. In this Letter, working with different logarithmic operators, we derive two previously unknown expressions for quantum Fisher information, and two Cramer-Rao bounds lower than the well-known one are found for non-Hermitian systems. These lower bounds are due to the merit of non-Hermitian observable and it can be understood as a result of extended regimes of optimization. Two experimentally feasible examples are presented to illustrate the theory, saturation of these bounds and estimation precisions beyond the Heisenberg limit are predicted and discussed. A setup to measure non-Hermitian observable is also proposed.
We present a general framework for sensitivity optimization in quantum parameter estimation schemes based on continuous (indirect) observation of a dynamical system. As an illustrative example, we analyze the canonical scenario of monitoring the posi tion of a free mass or harmonic oscillator to detect weak classical forces. We show that our framework allows the consideration of sensitivity scheduling as well as estimation strategies for non-stationary signals, leading us to propose corresponding generalizations of the Standard Quantum Limit for force detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا