ترغب بنشر مسار تعليمي؟ اضغط هنا

Alternate Estimation of a Classifier and the Class-Prior from Positive and Unlabeled Data

84   0   0.0 ( 0 )
 نشر من قبل Masahito Kato
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a problem of learning a binary classifier only from positive data and unlabeled data (PU learning) and estimating the class-prior in unlabeled data under the case-control scenario. Most of the recent methods of PU learning require an estimate of the class-prior probability in unlabeled data, and it is estimated in advance with another method. However, such a two-step approach which first estimates the class prior and then trains a classifier may not be the optimal approach since the estimation error of the class-prior is not taken into account when a classifier is trained. In this paper, we propose a novel unified approach to estimating the class-prior and training a classifier alternately. Our proposed method is simple to implement and computationally efficient. Through experiments, we demonstrate the practical usefulness of the proposed method.



قيم البحث

اقرأ أيضاً

Learning from positive and unlabeled (PU) data is an important problem in various applications. Most of the recent approaches for PU classification assume that the class-prior (the ratio of positive samples) in the training unlabeled dataset is ident ical to that of the test data, which does not hold in many practical cases. In addition, we usually do not know the class-priors of the training and test data, thus we have no clue on how to train a classifier without them. To address these problems, we propose a novel PU classification method based on density ratio estimation. A notable advantage of our proposed method is that it does not require the class-priors in the training phase; class-prior shift is incorporated only in the test phase. We theoretically justify our proposed method and experimentally demonstrate its effectiveness.
We develop a classification algorithm for estimating posterior distributions from positive-unlabeled data, that is robust to noise in the positive labels and effective for high-dimensional data. In recent years, several algorithms have been proposed to learn from positive-unlabeled data; however, many of these contributions remain theoretical, performing poorly on real high-dimensional data that is typically contaminated with noise. We build on this previous work to develop two practical classification algorithms that explicitly model the noise in the positive labels and utilize univariate transforms built on discriminative classifiers. We prove that these univariate transforms preserve the class prior, enabling estimation in the univariate space and avoiding kernel density estimation for high-dimensional data. The theoretical development and both parametric and nonparametric algorithms proposed here constitutes an important step towards wide-spread use of robust classification algorithms for positive-unlabeled data.
82 - Danfei Xu , Misha Denil 2019
Learning reward functions from data is a promising path towards achieving scalable Reinforcement Learning (RL) for robotics. However, a major challenge in training agents from learned reward models is that the agent can learn to exploit errors in the reward model to achieve high reward behaviors that do not correspond to the intended task. These reward delusions can lead to unintended and even dangerous behaviors. On the other hand, adversarial imitation learning frameworks tend to suffer the opposite problem, where the discriminator learns to trivially distinguish agent and expert behavior, resulting in reward models that produce low reward signal regardless of the input state. In this paper, we connect these two classes of reward learning methods to positive-unlabeled (PU) learning, and we show that by applying a large-scale PU learning algorithm to the reward learning problem, we can address both the reward under- and over-estimation problems simultaneously. Our approach drastically improves both GAIL and supervised reward learning, without any additional assumptions.
Understanding the relationships between biomedical terms like viruses, drugs, and symptoms is essential in the fight against diseases. Many attempts have been made to introduce the use of machine learning to the scientific process of hypothesis gener ation(HG), which refers to the discovery of meaningful implicit connections between biomedical terms. However, most existing methods fail to truly capture the temporal dynamics of scientific term relations and also assume unobserved connections to be irrelevant (i.e., in a positive-negative (PN) learning setting). To break these limits, we formulate this HG problem as future connectivity prediction task on a dynamic attributed graph via positive-unlabeled (PU) learning. Then, the key is to capture the temporal evolution of node pair (term pair) relations from just the positive and unlabeled data. We propose a variational inference model to estimate the positive prior, and incorporate it in the learning of node pair embeddings, which are then used for link prediction. Experiment results on real-world biomedical term relationship datasets and case study analyses on a COVID-19 dataset validate the effectiveness of the proposed model.
171 - Tong Wei , Feng Shi , Hai Wang 2020
Learning from positive and unlabeled data (PU learning) is prevalent in practical applications where only a couple of examples are positively labeled. Previous PU learning studies typically rely on existing samples such that the data distribution is not extensively explored. In this work, we propose a simple yet effective data augmentation method, coined~algo, based on emph{consistency regularization} which provides a new perspective of using PU data. In particular, the proposed~algo~incorporates supervised and unsupervised consistency training to generate augmented data. To facilitate supervised consistency, reliable negative examples are mined from unlabeled data due to the absence of negative samples. Unsupervised consistency is further encouraged between unlabeled datapoints. In addition,~algo~reduces margin loss between positive and unlabeled pairs, which explicitly optimizes AUC and yields faster convergence. Finally, we conduct a series of studies to demonstrate the effectiveness of consistency regularization. We examined three kinds of reliable negative mining methods. We show that~algo~achieves an averaged improvement of classification error from 16.49 to 13.09 on the CIFAR-10 dataset across different positive data amount.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا