ﻻ يوجد ملخص باللغة العربية
The TeV blazar Ton 599 has exhibited a peculiar flare in 2017 November. The temporal variation of the source is studied using simultaneous $gamma$-ray data from $textit{Fermi}$ Large Area Telescope and radio data from Owens Valley Radio Observatorys 40 m telescope, over the period of nine years. Four major flaring periods are observed in the $gamma$-ray energy band of 0.1-300 GeV. These periods are studied on a shorter timescale and modeled with a time-dependent function containing exponential rising and decaying components. The physical parameters of the jet are estimated numerically and compared with those reported in the literature. During the fourth flare a bunch of high energy photons ($>$10 GeV) were detected. The two highest energy photons having an energy of 76.9 GeV and 61.9 GeV are detected on MJD 58059.0 and 58073.3, respectively. This observation possibly constrains the $gamma$-ray emission region to lie near outer edge or outside the broad line region of size $sim$0.08 pc. The variation of equivalent width of a Mg-II line is studied using the spectroscopic data from Steward observatory. It was observed that the equivalent width of the line varies inversely with the underlying power-law continuum.
In this work, I have presented a multi-frequency variability and correlation study of the blazar Ton 599, which was observed first time in flaring state at the end of 2017. Data from textit{Fermi}-LAT, Swift-XRT/UVOT, Steward Observatory, and OVRO (1
During the last decade, M87s jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the
We consider the behavior of matter in the accretion column that emerges under accretion in binary systems near the surface of a white dwarf. The plasma heated in a standing shock wave near the white dwarf surface efficiently radiates in the X-ray ene
A study of the gravitationally lensed blazar PKS 1830-211 was carried out using multi waveband data collected by Fermi-LAT, Swift-XRT and Swift-UVOT telescopes between MJD 58400 to MJD 58800 (9 Oct 2018 to 13 Nov 2019). Flaring states were identified
Observations of very high energy gamma-rays from blazars provide information about acceleration mechanisms occurring in their innermost regions. Studies of variability in these objects allow a better understanding of the mechanisms at play. To invest