ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation of Plasma Parameters in an Accretion Column near the Surface of Accreting White Dwarfs from Their Flux Variability

71   0   0.0 ( 0 )
 نشر من قبل Andrey Semena
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the behavior of matter in the accretion column that emerges under accretion in binary systems near the surface of a white dwarf. The plasma heated in a standing shock wave near the white dwarf surface efficiently radiates in the X-ray energy band. We suggest a method for estimating post-shock plasma parameters, such as the density, temperature, and height of the hot zone, from the power spectrum of its X-ray luminosity variability. The method is based on the fact that the flux variability amplitude for the hot region at various Fourier frequencies depends significantly on its cooling time, which is determined by the parameters of the hot zone in the accretion column. This allows the density and temperature of the hot matter to be estimated. We show that the characteristic cooling time can be efficiently determined from the break frequency in the power spectrum of the X-ray flux variability for accreting white dwarfs. The currently available X-ray instruments do not allow such measurements to be made because of an insufficient collecting area, but this will most likely become possible with new-generation large-area X-ray spectrometers.



قيم البحث

اقرأ أيضاً

85 - Koji Mukai 2017
Interacting binaries in which a white dwarf accretes material from a companion - cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant - are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.
61 - J. L. Sokoloski 2004
Collimated outflows from accreting white dwarfs have an important role to play in the study of astrophysical jets. Observationally, collimated outflows are associated with systems in which material is accreted though a disk. Theoretically, accretion disks provide the foundation for many jet models. Perhaps the best-understood of all accretion disks are those in cataclysmic variable stars (CVs). Since the disks in other accreting white-dwarf (WD) binaries are probably similar to CV disks (at least to the extent that one does not expect complications such as, for example, advection-dominated flows), with WD accretors one has the advantage of a relatively good grasp of the region from which the outflows are likely to originate. We briefly compare the properties of the three main classes of WD accretors, two of which have members that produce jets, and review the cases of three specific jet-producing WD systems.
We analyze optical photometric data of short term variability (flickering) of accreting white dwarfs in cataclysmic variables (KR Aur, MV Lyr, V794 Aql, TT Ari, V425 Cas), recurrent novae (RS Oph and T CrB) and jet-ejecting symbiotic stars (CH Cyg an d MWC 560). We find that the amplitude-flux relationship is visible over four orders of magnitude, in the range of fluxes from $10^{29}$ to $10^{33}$ erg s$^{-1}$ AA$^{-1}$, as a statistically perfect correlation with correlation coefficient 0.96 and p-value $ sim 10^{-28}$. In the above range, the amplitude of variability for any of our 9 objects is proportional to the flux level with (almost) one and the same factor of proportionality for all 9 accreting white dwarfs with $Delta F = 0.36 (pm 0.05) F_{av}$, $sigma_{rms} = 0.086(pm 0.011) F_{av}$, and $sigma_{rms} / Delta F = 0.24 pm 0.02$. Over all, our results indicate that the viscosity in the accretion discs is practically the same for all 9 objects in our sample, in the mass accretion rate range $2 times 10^{-11} - 2times10^{-7}$ $M_odot$ yr$^{-1}$.
135 - M. Hernanz , J. Jose (2 2008
Thermonuclear (type Ia) supernovae are explosions in accreting white dwarfs, but the exact scenario leading to these explosions is still unclear. An important step to clarify this point is to understand the behaviour of accreting white dwarfs in clos e binary systems. The characteristics of the white dwarf (mass, chemical composition, luminosity), the accreted material (chemical composition) and those related with the properties of the binary system (mass accretion rate), are crucial for the further evolution towards the explosion. An analysis of the outcome of accretion and the implications for the growth of the white dwarf towards the Chandrasekhar mass and its thermonuclear explosion is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا