ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged-particle decays of highly excited states in $^{19}$F

434   0   0.0 ( 0 )
 نشر من قبل Philip Adsley
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron-capture reactions on $^{18}$F in the helium-burning shell play an important role in the production of $^{15}$N during core-collapse supernovae. The competition between the $^{18}$F($n,p/alpha$)$^{18}$O/$^{15}$N reactions controls the amount of $^{15}$N produced. The strengths of these reactions depend on the decay branching ratios of states in $^{19}$F above the neutron threshold. We report on an experiment investigating the decay branching ratios of these states in order to better constrain the strengths of the reactions.



قيم البحث

اقرأ أيضاً

A beam containing a substantial component of both the $J^{pi}=5^+$, $T_{1/2}=162$ ns isomeric state of $^{18}$F and its $1^+$, 109.77-min ground state has been utilized to study members of the ground-state rotational band in $^{19}$F through the neut ron transfer reaction $(d$,$p)$ in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2$^+$ band-terminating state. The agreement between shell-model calculations, using an interaction constructed within the $sd$ shell, and our experimental results reinforces the idea of a single-particle/collective duality in the descriptions of the structure of atomic nuclei.
Spatially-correlated overabundances of $^{15}$N and $^{18}$O observed in some low-density graphite meteoritic grains have been connected to nucleosynthesis taking place in the helium-burning shell during core-collapse supernovae. Two of the reactions which have been identified as important to the final abundances of $^{15}$N and $^{18}$O are $^{18}$F($n,alpha$)$^{15}$N and $^{18}$F($n,p$)$^{18}$O. The relative strengths of the $^{18}$F($n,alpha$)$^{15}$N and $^{18}$F($n,p$)$^{18}$O reactions depend on the relative $alpha_0$ and $p_0$ decays from states above the neutron threshold in $^{19}$F in addition to other properties. Experimental data on the charged-particle decays from these highly excited states are lacking or inconsistent. Two experiments were performed using proton inelastic scattering from LiF targets and magnetic spectrographs. The first experiment used the high-resolution Q3D spectrograph at Munich to constrain properties of levels in $^{19}$F. A second experiment using the Orsay Split-Pole spectrograph and an array of silicon detectors was performed in order to measure the charged-particle decays of neutron-unbound levels in $^{19}$F. A number of levels in $^{19}$F have been identified along with their corresponding charged-particle decays. The first state above the neutron threshold which has an observed proton-decay branch to the ground state of $^{18}$O lies 68 keV above the neutron threshold while the $alpha$-particle decays from the neutron-unbound levels are generally observed to be much stronger than the proton decays. Neutron-unbound levels in $^{19}$F are observed to decay predominantly by $alpha$-particle emission, supporting the role of $^{18}$F($n,alpha$)$^{15}$N in the production of $^{15}$N in the helium-burning shell of supernovae. Improved resonant-scattering reaction data are required in order to be able to determine the reaction rates accurately.
A search for double beta decays of $^{110}$Pd and $^{102}$Pd into excited states of the daughter nuclides has been performed using three ultra-low background gamma-spectrometry measurements in the Felsenkeller laboratory, Germany, the HADES laborator y, Belgium and at the LNGS, Italy. The combined Bayesian analysis of the three measurements sets improved half-life limits for the $2 ubetabeta$ and $0 ubetabeta$ decay modes of the $2^+_1$, $0^+_1$ and $2^+_2$ transitions in $^{110}$Pd to $2.9cdot10^{20}$ yr, $4.0cdot10^{20}$ yr and $3.0cdot10^{20}$ yr respectively and in $^{102}$Pd to $7.6cdot10^{18}$ yr, $8.8cdot10^{18}$ yr and $1.4cdot10^{19}$ yr respectively with 90% credibility.
Detection of nuclear-decay $gamma$ rays provides a sensitive thermometer of nova nucleosynthesis. The most intense $gamma$-ray flux is thought to be annihilation radiation from the $beta^+$ decay of $^{18}$F, which is destroyed prior to decay by the $^{18}$F($p$,$alpha$)$^{15}$O reaction. Estimates of $^{18}$F production had been uncertain, however, because key near-threshold levels in the compound nucleus, $^{19}$Ne, had yet to be identified. This Letter reports the first measurement of the $^{19}$F($^{3}$He,$tgamma$)$^{19}$Ne reaction, in which the placement of two long-sought 3/2$^+$ levels is suggested via triton-$gamma$-$gamma$ coincidences. The precise determination of their resonance energies reduces the upper limit of the rate by a factor of $1.5-17$ at nova temperatures and reduces the average uncertainty on the nova detection probability by a factor of 2.1.
Classical novae result from thermonuclear explosions producing several $gamma$-ray emitters which are prime targets for satellites observing in the MeV range. The early 511 keV gamma-ray emission depends critically on the $^{18}$F(p,$alpha$)$^{15}$O reaction rate which, despite many experimental and theoretical efforts, still remains uncertain. One of the main uncertainties in the $^{18}$F(p,$alpha$)$^{15}$O reaction rate is the contribution in the Gamow window of interference between sub-threshold $^{19}$Ne states and known broad states at higher energies. Therefore the goal of this work is to clarify the existence and the nature of these sub-threshold states. States in the $^{19}$Ne compound nucleus were studied at the Tandem-ALTO facility using the $^{19}$F($^3$He,t)$^{19}$Ne charge exchange reaction. Tritons were detected with an Enge Split-pole spectrometer while decaying protons or $alpha$-particles from unbound $^{19}$Ne states were collected, in coincidence, with a double-sided silicon strip detector array. Angular correlations were extracted and constraints on the spin and parity of decaying states established. The coincidence yield at $E_x$ = 6.29 MeV was observed to be high spin, supporting the conclusion that it is indeed a doublet consisting of high spin and low spin components. Evidence for a broad, low spin state was observed around 6 MeV. Branching ratios were extracted for several states above the proton threshold and were found to be consistent with the literature. R-matrix calculations show the relative contribution of sub-threshold states to the astrophysically important energy region above the proton threshold. The levels schemes of $^{19}$Ne and $^{19}$F are still not sufficiently well known and further studies of the analogue assignments are needed. The tentative broad state at 6 MeV may only play a role if the reduced proton width is large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا