ﻻ يوجد ملخص باللغة العربية
A beam containing a substantial component of both the $J^{pi}=5^+$, $T_{1/2}=162$ ns isomeric state of $^{18}$F and its $1^+$, 109.77-min ground state has been utilized to study members of the ground-state rotational band in $^{19}$F through the neutron transfer reaction $(d$,$p)$ in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2$^+$ band-terminating state. The agreement between shell-model calculations, using an interaction constructed within the $sd$ shell, and our experimental results reinforces the idea of a single-particle/collective duality in the descriptions of the structure of atomic nuclei.
Neutron-rich nuclei were populated in a relativistic fission of 238U. Gamma-rays with energies of 135 keV and 184 keV were associated with two isomeric states in 121Pd and 117Ru. Half-lives of 0.63(5) microseconds and 2.0(3) micrisecondss were deduce
Neutron-capture reactions on $^{18}$F in the helium-burning shell play an important role in the production of $^{15}$N during core-collapse supernovae. The competition between the $^{18}$F($n,p/alpha$)$^{18}$O/$^{15}$N reactions controls the amount o
The discovery of naturally occurring long-lived isomeric states (t_1/2 > 10^8 yr) in the neutron-deficient isotopes 211,213,217,218Th [A. Marinov et al., Phys. Rev. C 76, 021303(R) (2007)] was reexamined using accelerator mass spectrometry (AMS). Bec
Evidence for the existence of long-lived neutron-deficient isotopes has been found in a study of naturally-occurring Th using iductively coupled plasma-sector field mass spectrometry. They are interpreted as belonging to the recently discovered class
Mass measurements of fission and projectile fragments, produced via $^{238}$U and $^{124}$Xe primary beams, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with a mass resolving pow