ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the study of tilt stability of local minimizers, which plays an important role in both theoretical and numerical aspects of optimization. This notion has been comprehensively investigated in the unconstrained framework as well as for problems of nonlinear programming with $C^2$-smooth data. Available results for nonpolyhedral conic programs were obtained only under strong constraint nondegeneracy assumptions. Here we develop an approach of second-order variational analysis, which allows us to establish complete neighborhood and pointbased characterizations of tilt stability for problems of second-order cone programming generated by the nonpolyhedral second-order/Lorentz/ice-cream cone. These characterizations are established under the weakest metric subregularity constraint qualification condition.
We introduce a conic embedding condition that gives a hierarchy of cones and cone programs. This condition is satisfied by a large number of convex cones including the cone of copositive matrices, the cone of completely positive matrices, and all sym
We maximize the production of biogas in a gradostat at steady state. The physical decision variables are the water, substrate, and biomass entering each tank and the flows through the interconnecting pipes. Our main technical focus is the nonconvex c
In this paper, we propose a combined approach with second-order optimality conditions of the lower level problem to study constraint qualifications and optimality conditions for bilevel programming problems. The new method is inspired by the combined
The error bound property for a solution set defined by a set-valued mapping refers to an inequality that bounds the distance between vectors closed to a solution of the given set by a residual function. The error bound property is a Lipschitz-like/ca
This paper presents a method to reduce the computational complexity of including second-order dynamics sensitivity information into the Differential Dynamic Programming (DDP) trajectory optimization algorithm. A tensor-free approach to DDP is develop