ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a combined approach with second-order optimality conditions of the lower level problem to study constraint qualifications and optimality conditions for bilevel programming problems. The new method is inspired by the combined approach developed by Ye and Zhu in 2010, where the authors combined the classical first-order and the value function approaches to derive new necessary optimality conditions under weaker conditions. In our approach, we add the second-order optimality condition to the combined program as a new constraint. We show that when all known approaches fail, adding the second-order optimality condition as a constraint makes the corresponding partial calmness condition easier to hold. We also give some discussions on optimality conditions and advantages and disadvantages of the combined approaches with the first-order and the second-order information.
In this paper we study second-order optimality conditions for non-convex set-constrained optimization problems. For a convex set-constrained optimization problem, it is well-known that second-order optimality conditions involve the support function o
The bilevel program is an optimization problem where the constraint involves solutions to a parametric optimization problem. It is well-known that the value function reformulation provides an equivalent single-level optimization problem but it result
This paper introduces and studies the optimal control problem with equilibrium constraints (OCPEC). The OCPEC is an optimal control problem with a mixed state and control equilibrium constraint formulated as a complementarity constraint and it can be
In this article, we derive first-order necessary optimality conditions for a constrained optimal control problem formulated in the Wasserstein space of probability measures. To this end, we introduce a new notion of localised metric subdifferential f
In this paper we study an optimal control problem with nonsmooth mixed state and control constraints. In most of the existing results, the necessary optimality condition for optimal control problems with mixed state and control constraints are derive