ﻻ يوجد ملخص باللغة العربية
We present a numerical and theoretical investigation of nonlinear spectral energy cascade of decaying finite-amplitude planar acoustic waves in a single-component ideal gas at standard temperature and pressure (STP). We analyze various one-dimensional canonical flow configurations: a propagating traveling wave (TW), a standing wave (SW), and randomly initialized Acoustic Wave Turbulence (AWT). We use shock-resolved mesh-adaptive direct numerical simulations (DNS) of the fully compressible one-dimensional Navier-Stokes equations to simulate the spectral energy cascade in nonlinear acoustic waves. We also derive a new set of nonlinear acoustics equations truncated to second order and the corresponding perturbation energy corollary yielding the expression for a new perturbation energy norm $E^{(2)}$. Its spatial average, <$E^{(2)}$> satisfies the definition of a Lyapunov function, correctly capturing the inviscid (or lossless) broadening of spectral energy in the initial stages of evolution -- analogous to the evolution of kinetic energy during the hydrodynamic break down of three-dimensional coherent vorticity -- resulting in the formation of smaller scales. Upon saturation of the spectral energy cascade i.e. fully broadened energy spectrum, the onset of viscous losses causes a monotonic decay of <$E^{(2)}$> in time.
We begin with the theoretical study of spectral energy cascade due to the propagation of high amplitude sound in the absence of thermal sources. To this end, a first-principles-based system of governing equations, correct up to second order in pertur
Stratified turbulence shows scale- and direction-dependent anisotropy and the coexistence of weak turbulence of internal gravity waves and strong turbulence of eddies. Straightforward application of standard analyses developed in isotropic turbulence
The 4/5-law of turbulence, which characterizes the energy cascade from large to small-sized eddies at high Reynolds numbers in classical fluids, is verified experimentally in a superfluid 4He wind tunnel, operated down to 1.56 K and up to R_lambda ~
The conventional approach to the turbulent energy cascade, based on Richardson-Kolmogorov phenomenology, ignores the topology of emerging vortices, which is related to the helicity of the turbulent flow. It is generally believed that helicity can pla
Nonlinear dynamics of surface gravity waves trapped by an opposing jet current is studied analytically and numerically. For wave fields narrowband in frequency but not necessarily with narrow angular distributions the developed asymptotic weakly nonl