ﻻ يوجد ملخص باللغة العربية
We discuss and qualify a previously unnoticed connection between two different phenomena in the physics of nanoscale friction, general in nature and also met in experiments including sliding emu- lations in optical lattices, and protein force spectroscopy. The first is thermolubricity, designating the condition in which a dry nanosized slider can at sufficiently high temperature and low velocity exhibit very small viscous friction f ~ v despite strong corrugations that would commonly imply hard mechanical stick-slip f ~ log(v). The second, apparently unrelated phenomenon present in externally forced nanosystems, is the occurrence of negative work tails (free lunches) in the work probabilty distribution, tails whose presence is necessary to fulfil the celebrated Jarzynski equality of non-equilibrium statistical mechanics. Here we prove analytically and demonstrate numerically in the prototypical classical overdamped one-dimensional point slider (Prandtl-Tomlinson) model that the presence or absence of thermolubricity is exactly equivalent to satisfaction or violation of the Jarzynski equality. The divide between the two regimes, satisfaction of Jarzynski with ther- molubricity, and violation of both, simply coincides with the total frictional work per cycle falling below or above kT respectively. This concept can, with due caution, be extended to more complex sliders, thus inviting crosscheck experiments, such as searching for free lunches in cold ion sliding as well as in forced protein unwinding, and alternatively checking for a thermolubric regime in dragged colloid monolayers. As an important byproduct, we derive a parameter-free formula expressing the linear velocity coefficient of frictional dissipated power in the thermolubric viscous regime, correcting previous empirically parametrized expressions.
We illustrate the Jarzynski equality on the exactly solvable model of a one-dimensional ideal gas in uniform expansion or compression. The analytical results for the probability density $P(W)$ of the work $W$ performed by the gas are compared with th
A single bit memory system is made with a brownian particle held by an optical tweezer in a double-well potential and the work necessary to erase the memory is measured. We show that the minimum of this work is close to the Landauers bound only for v
We have experimentally checked the Jarzynski equality and the Crooks relation on the thermal fluctuations of a macroscopic mechanical oscillator in contact with a heat reservoir. We found that, independently of the time scale and amplitude of the dri
One particle in a classical perfect gas is driven out of equilibrium by changing its mass over a short time interval. The work done on the driven particle depends on its collisions with the other particles in the gas. This model thus provides an exam
Measuring the fluctuations of work in coherent quantum systems is notoriously problematic. Aiming to reveal the ultimate source of these problems, we demand of work measurement schemes the sheer minimum and see if those demands can be met at all. We