ﻻ يوجد ملخص باللغة العربية
One particle in a classical perfect gas is driven out of equilibrium by changing its mass over a short time interval. The work done on the driven particle depends on its collisions with the other particles in the gas. This model thus provides an example of a non-equilibrium process in a system (the driven particle) coupled to an environment (the rest of the gas). We calculate the work done on the driven particle and compare the results to Jarzynskis equality relating a non-equilibrium work process to an equilibrium free-energy difference. The results for this model are generalised to the case of a system that is driven in one degree of freedom while interacting with the environment through other degrees of freedom.
We illustrate the Jarzynski equality on the exactly solvable model of a one-dimensional ideal gas in uniform expansion or compression. The analytical results for the probability density $P(W)$ of the work $W$ performed by the gas are compared with th
We discuss and qualify a previously unnoticed connection between two different phenomena in the physics of nanoscale friction, general in nature and also met in experiments including sliding emu- lations in optical lattices, and protein force spectro
A single bit memory system is made with a brownian particle held by an optical tweezer in a double-well potential and the work necessary to erase the memory is measured. We show that the minimum of this work is close to the Landauers bound only for v
We have experimentally checked the Jarzynski equality and the Crooks relation on the thermal fluctuations of a macroscopic mechanical oscillator in contact with a heat reservoir. We found that, independently of the time scale and amplitude of the dri
This paper provides an introduction to some stochastic models of lattice gases out of equilibrium and a discussion of results of various kinds obtained in recent years. Although these models are different in their microscopic features, a unified pict