ﻻ يوجد ملخص باللغة العربية
Charged particles exhibit the Hall effect in the presence of magnetic fields. Analogously, ferromagnetic skyrmions with non-zero topological charges and finite fictitious magnetic fields exhibit the skyrmion Hall effect, which is detrimental for applications. The skyrmion Hall effect has been theoretically predicted to vanish for antiferromagnetic skyrmions because the fictitious magnetic field, proportional to net spin density, is zero. We experimentally confirm this prediction by observing current-driven transverse elongation of pinned ferrimagnetic bubbles. Remarkably, the skyrmion Hall effect, estimated with the angle between the current and bubble elongation directions, vanishes at the angular momentum compensation temperature where the net spin density vanishes. This study establishes a direct connection between the fictitious magnetic field and spin density, offering a pathway towards the realization of skyrmionic devices.
Suppose a classical electron is confined to move in the $xy$ plane under the influence of a constant magnetic field in the positive $z$ direction. It then traverses a circular orbit with a fixed positive angular momentum $L_z$ with respect to the cen
Magnetic skyrmions are chiral spin textures that hold great promise as nanoscale information carriers. Since their first observation at room temperature, progress has been made in their current-induced manipulation, with fast motion reported in stray
We examine the current-induced dynamics of a skyrmion that is subject to both structural and bulk inversion asymmetry. There arises a hybrid type of Dzyaloshinskii-Moriya interaction (DMI) which is in the form of a mixture of interfacial and bulk DMI
We investigate a magnetic domain-wall (DW) motion in two dynamic regimes, creep and flow regimes, near the angular momentum compensation temperature (T_A) of ferrimagnet. In the flow regime, the DW speed shows sharp increase at T_A due to the emergen
Inverse spin Hall effect (ISHE) allows the conversion of pure spin current into charge current in nonmagnetic materials (NM) due to spin-orbit interaction (SOI). In ferromagnetic materials (FM), SOI is known to contribute to anomalous Hall effect (AH