ترغب بنشر مسار تعليمي؟ اضغط هنا

Distinct domain-wall motion between creep and flow regimes near the angular momentum compensation temperature of ferrimagnet

72   0   0.0 ( 0 )
 نشر من قبل Kab-Jin Kim
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate a magnetic domain-wall (DW) motion in two dynamic regimes, creep and flow regimes, near the angular momentum compensation temperature (T_A) of ferrimagnet. In the flow regime, the DW speed shows sharp increase at T_A due to the emergence of antiferromagnetic DW dynamics. In the creep regime, however, the DW speed exhibits a monotonic increase with increasing the temperature. This result suggests that, in the creep regime, the thermal activation process governs the DW dynamics even near T_A. Our result unambiguously shows the distinct behavior of ferrimagnetic DW motion depending on the dynamic regime, which is important for emerging ferrimagnet-based spintronic applications.



قيم البحث

اقرأ أيضاً

Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core elements in spintronic devices. A central motivation toward this direction is that antiferromagnetic spin dynamics is expected to be much faste r than ferromagnetic counterpart because antiferromagnets have higher resonance frequencies than ferromagnets. Recent theories indeed predicted faster dynamics of antiferromagnetic domain walls (DWs) than ferromagnetic DWs. However, experimental investigations of antiferromagnetic spin dynamics have remained unexplored mainly because of the immunity of antiferromagnets to magnetic fields. Furthermore, this immunity makes field-driven antiferromagnetic DW motion impossible despite rich physics of field-driven DW dynamics as proven in ferromagnetic DW studies. Here we show that fast field-driven antiferromagnetic spin dynamics is realized in ferrimagnets at the angular momentum compensation point TA. Using rare-earth 3d-transition metal ferrimagnetic compounds where net magnetic moment is nonzero at TA, the field-driven DW mobility remarkably enhances up to 20 km/sT. The collective coordinate approach generalized for ferrimagnets and atomistic spin model simulations show that this remarkable enhancement is a consequence of antiferromagnetic spin dynamics at TA. Our finding allows us to investigate the physics of antiferromagnetic spin dynamics and highlights the importance of tuning of the angular momentum compensation point of ferrimagnets, which could be a key towards ferrimagnetic spintronics.
The angular momentum compensation temperature $T_{rm A}$ of ferrimagnets has attracted much attention because of high-speed magnetic dynamics near $T_{rm A}$. We show that NMR can be used to investigate domain wall dynamics near $T_{rm A}$ in ferrima gnets. We performed $^{57}$Fe-NMR measurements on the ferrimagnet Ho$_3$Fe$_5$O$_{12}$ with $T_{rm A} = 245$ K. In a multi-domain state, the NMR signal is enhanced by domain wall motion. We found that the NMR signal enhancement shows a maximum at $T_{rm A}$ in the multi-domain state. The NMR signal enhancement occurs due to increasing domain-wall mobility toward $T_{rm A}$. We develop the NMR signal enhancement model involves domain-wall mobility. Our study shows that NMR in multi-domain state is a powerful tool to determine $T_{rm A}$, even from a powder sample and it expands the possibility of searching for angular momentum-compensated materials.
We report on magnetic domain wall velocity measurements in ultrathin Pt/Co(0.5-0.8 nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examina tion of the transition between thermally activated creep and viscous flow: motion regimes predicted from general theories for driven elastic interfaces in weakly disordered media. The dissipation limited flow regime is found to be consistent with precessional domain wall motion, analysis of which yields values for the damping parameter, $alpha$.
Due to the difficulty in detecting and manipulating magnetic states of antiferromagnetic materials, studying their switching dynamics using electrical methods remains a challenging task. In this work, by employing heavy metal/rare earth-transition me tal alloy bilayers, we experimentally studied current-induced domain wall dynamics in an antiferromagnetically coupled system. We show that the current-induced domain wall mobility reaches a maximum close to the angular momentum compensation. With experiment and modelling, we further reveal the internal structures of domain walls and the underlying mechanisms for their fast motion. We show that the chirality of the ferrimagnetic domain walls remains the same across the compensation points, suggesting that spin orientations of specific sublattices rather than net magnetization determine Dzyaloshinskii-Moriya interaction in heavy metal/ferrimagnet bilayers. The high current-induced domain wall mobility and the robust domain wall chirality in compensated ferrimagnetic material opens new opportunities for high-speed spintronic devices.
Charged particles exhibit the Hall effect in the presence of magnetic fields. Analogously, ferromagnetic skyrmions with non-zero topological charges and finite fictitious magnetic fields exhibit the skyrmion Hall effect, which is detrimental for appl ications. The skyrmion Hall effect has been theoretically predicted to vanish for antiferromagnetic skyrmions because the fictitious magnetic field, proportional to net spin density, is zero. We experimentally confirm this prediction by observing current-driven transverse elongation of pinned ferrimagnetic bubbles. Remarkably, the skyrmion Hall effect, estimated with the angle between the current and bubble elongation directions, vanishes at the angular momentum compensation temperature where the net spin density vanishes. This study establishes a direct connection between the fictitious magnetic field and spin density, offering a pathway towards the realization of skyrmionic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا