ﻻ يوجد ملخص باللغة العربية
We investigate a magnetic domain-wall (DW) motion in two dynamic regimes, creep and flow regimes, near the angular momentum compensation temperature (T_A) of ferrimagnet. In the flow regime, the DW speed shows sharp increase at T_A due to the emergence of antiferromagnetic DW dynamics. In the creep regime, however, the DW speed exhibits a monotonic increase with increasing the temperature. This result suggests that, in the creep regime, the thermal activation process governs the DW dynamics even near T_A. Our result unambiguously shows the distinct behavior of ferrimagnetic DW motion depending on the dynamic regime, which is important for emerging ferrimagnet-based spintronic applications.
Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core elements in spintronic devices. A central motivation toward this direction is that antiferromagnetic spin dynamics is expected to be much faste
The angular momentum compensation temperature $T_{rm A}$ of ferrimagnets has attracted much attention because of high-speed magnetic dynamics near $T_{rm A}$. We show that NMR can be used to investigate domain wall dynamics near $T_{rm A}$ in ferrima
We report on magnetic domain wall velocity measurements in ultrathin Pt/Co(0.5-0.8 nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examina
Due to the difficulty in detecting and manipulating magnetic states of antiferromagnetic materials, studying their switching dynamics using electrical methods remains a challenging task. In this work, by employing heavy metal/rare earth-transition me
Charged particles exhibit the Hall effect in the presence of magnetic fields. Analogously, ferromagnetic skyrmions with non-zero topological charges and finite fictitious magnetic fields exhibit the skyrmion Hall effect, which is detrimental for appl