ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the problem of synthesizing strategies for linear temporal logic (LTL) specifications that are interpreted over finite traces -- a problem that is central to the automated construction of controllers, robot programs, and business processes. We study a natural variant of the finite LTL synthesis problem in which strategy guarantees are predicated on specified environment behavior. We further explore a quantitative extension of LTL that supports specification of quality measures, utilizing it to synthesize high-quality strategies. We propose new notions of optimality and associated algorithms that yield strategies that best satisfy specified quality measures. Our algorithms utilize an automata-game approach, positioning them well for future implementation via existing state-of-the-art techniques.
The synthesis of reactive systems from linear temporal logic (LTL) specifications is an important aspect in the design of reliable software and hardware. We present our adaption of the classic automata-theoretic approach to LTL synthesis, implemented
A data word is a sequence of pairs of a letter from a finite alphabet and an element from an infinite set, where the latter can only be compared for equality. To reason about data words, linear temporal logic is extended by the freeze quantifier, whi
This continuously extended technical report collects and compares commonly used formulae from the literature and provides them in a machine readable way.
In the classical synthesis problem, we are given an LTL formula psi over sets of input and output signals, and we synthesize a transducer that realizes psi. One weakness of automated synthesis in practice is that it pays no attention to the quality o
In recent years, there is growing need and interest in formalizing and reasoning about the quality of software and hardware systems. As opposed to traditional verification, where one handles the question of whether a system satisfies, or not, a given