ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Combinatorial Ensembles for Defending Against Adversarial Examples

252   0   0.0 ( 0 )
 نشر من قبل George Adam
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many deep learning algorithms can be easily fooled with simple adversarial examples. To address the limitations of existing defenses, we devised a probabilistic framework that can generate an exponentially large ensemble of models from a single model with just a linear cost. This framework takes advantage of neural network depth and stochastically decides whether or not to insert noise removal operators such as VAEs between layers. We show empirically the important role that model gradients have when it comes to determining transferability of adversarial examples, and take advantage of this result to demonstrate that it is possible to train models with limited adversarial attack transferability. Additionally, we propose a detection method based on metric learning in order to detect adversarial examples that have no hope of being cleaned of maliciously engineered noise.



قيم البحث

اقرأ أيضاً

The vulnerability of machine learning systems to adversarial attacks questions their usage in many applications. In this paper, we propose a randomized diversification as a defense strategy. We introduce a multi-channel architecture in a gray-box sce nario, which assumes that the architecture of the classifier and the training data set are known to the attacker. The attacker does not only have access to a secret key and to the internal states of the system at the test time. The defender processes an input in multiple channels. Each channel introduces its own randomization in a special transform domain based on a secret key shared between the training and testing stages. Such a transform based randomization with a shared key preserves the gradients in key-defined sub-spaces for the defender but it prevents gradient back propagation and the creation of various bypass systems for the attacker. An additional benefit of multi-channel randomization is the aggregation that fuses soft-outputs from all channels, thus increasing the reliability of the final score. The sharing of a secret key creates an information advantage to the defender. Experimental evaluation demonstrates an increased robustness of the proposed method to a number of known state-of-the-art attacks.
Despite the remarkable success of deep neural networks, significant concerns have emerged about their robustness to adversarial perturbations to inputs. While most attacks aim to ensure that these are imperceptible, physical perturbation attacks typi cally aim for being unsuspicious, even if perceptible. However, there is no universal notion of what it means for adversarial examples to be unsuspicious. We propose an approach for modeling suspiciousness by leveraging cognitive salience. Specifically, we split an image into foreground (salient region) and background (the rest), and allow significantly larger adversarial perturbations in the background, while ensuring that cognitive salience of background remains low. We describe how to compute the resulting non-salience-preserving dual-perturbation attacks on classifiers. We then experimentally demonstrate that our attacks indeed do not significantly change perceptual salience of the background, but are highly effective against classifiers robust to conventional attacks. Furthermore, we show that adversarial training with dual-perturbation attacks yields classifiers that are more robust to these than state-of-the-art robust learning approaches, and comparable in terms of robustness to conventional attacks.
Despite being popularly used in many applications, neural network models have been found to be vulnerable to adversarial examples, i.e., carefully crafted examples aiming to mislead machine learning models. Adversarial examples can pose potential ris ks on safety and security critical applications. However, existing defense approaches are still vulnerable to attacks, especially in a white-box attack scenario. To address this issue, we propose a new defense approach, named MulDef, based on robustness diversity. Our approach consists of (1) a general defense framework based on multiple models and (2) a technique for generating these multiple models to achieve high defense capability. In particular, given a target model, our framework includes multiple models (constructed from the target model) to form a model family. The model family is designed to achieve robustness diversity (i.e., an adversarial example successfully attacking one model cannot succeed in attacking other models in the family). At runtime, a model is randomly selected from the family to be applied on each input example. Our general framework can inspire rich future research to construct a desirable model family achieving higher robustness diversity. Our evaluation results show that MulDef (with only up to 5 models in the family) can substantially improve the target models accuracy on adversarial examples by 22-74% in a white-box attack scenario, while maintaining similar accuracy on legitimate examples.
We propose a new ensemble method for detecting and classifying adversarial examples generated by state-of-the-art attacks, including DeepFool and C&W. Our method works by training the members of an ensemble to have low classification error on random benign examples while simultaneously minimizing agreement on examples outside the training distribution. We evaluate on both MNIST and CIFAR-10, against oblivious and both white- and black-box adversaries.
Deep neural networks have demonstrated cutting edge performance on various tasks including classification. However, it is well known that adversarially designed imperceptible perturbation of the input can mislead advanced classifiers. In this paper, Permutation Phase Defense (PPD), is proposed as a novel method to resist adversarial attacks. PPD combines random permutation of the image with phase component of its Fourier transform. The basic idea behind this approach is to turn adversarial defense problems analogously into symmetric cryptography, which relies solely on safekeeping of the keys for security. In PPD, safe keeping of the selected permutation ensures effectiveness against adversarial attacks. Testing PPD on MNIST and CIFAR-10 datasets yielded state-of-the-art robustness against the most powerful adversarial attacks currently available.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا