ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Bayesian Active Learning for Natural Language Processing: Results of a Large-Scale Empirical Study

165   0   0.0 ( 0 )
 نشر من قبل Aditya Siddhant
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Several recent papers investigate Active Learning (AL) for mitigating the data dependence of deep learning for natural language processing. However, the applicability of AL to real-world problems remains an open question. While in supervised learning, practitioners can try many different methods, evaluating each against a validation set before selecting a model, AL affords no such luxury. Over the course of one AL run, an agent annotates its dataset exhausting its labeling budget. Thus, given a new task, an active learner has no opportunity to compare models and acquisition functions. This paper provides a large scale empirical study of deep active learning, addressing multiple tasks and, for each, multiple datasets, multiple models, and a full suite of acquisition functions. We find that across all settings, Bayesian active learning by disagreement, using uncertainty estimates provided either by Dropout or Bayes-by Backprop significantly improves over i.i.d. baselines and usually outperforms classic uncertainty sampling.

قيم البحث

اقرأ أيضاً

Multi-Task Learning (MTL) aims at boosting the overall performance of each individual task by leveraging useful information contained in multiple related tasks. It has shown great success in natural language processing (NLP). Currently, a number of M LT architectures and learning mechanisms have been proposed for various NLP tasks. However, there is no systematic exploration and comparison of different MLT architectures and learning mechanisms for their strong performance in-depth. In this paper, we conduct a thorough examination of typical MTL methods on a broad range of representative NLP tasks. Our primary goal is to understand the merits and demerits of existing MTL methods in NLP tasks, thus devising new hybrid architectures intended to combine their strengths.
99 - Hai Wang 2020
Deep learning has become the workhorse for a wide range of natural language processing applications. But much of the success of deep learning relies on annotated examples. Annotation is time-consuming and expensive to produce at scale. Here we are in terested in methods for reducing the required quantity of annotated data -- by making the learning methods more knowledge efficient so as to make them more applicable in low annotation (low resource) settings. There are various classical approaches to making the models more knowledge efficient such as multi-task learning, transfer learning, weakly supervised and unsupervised learning etc. This thesis focuses on adapting such classical methods to modern deep learning models and algorithms. This thesis describes four works aimed at making machine learning models more knowledge efficient. First, we propose a knowledge rich deep learning model (KRDL) as a unifying learning framework for incorporating prior knowledge into deep models. In particular, we apply KRDL built on Markov logic networks to denoise weak supervision. Second, we apply a KRDL model to assist the machine reading models to find the correct evidence sentences that can support their decision. Third, we investigate the knowledge transfer techniques in multilingual setting, where we proposed a method that can improve pre-trained multilingual BERT based on the bilingual dictionary. Fourth, we present an episodic memory network for language modelling, in which we encode the large external knowledge for the pre-trained GPT.
92 - Wenpeng Yin 2020
Few-shot natural language processing (NLP) refers to NLP tasks that are accompanied with merely a handful of labeled examples. This is a real-world challenge that an AI system must learn to handle. Usually we rely on collecting more auxiliary informa tion or developing a more efficient learning algorithm. However, the general gradient-based optimization in high capacity models, if training from scratch, requires many parameter-updating steps over a large number of labeled examples to perform well (Snell et al., 2017). If the target task itself cannot provide more information, how about collecting more tasks equipped with rich annotations to help the model learning? The goal of meta-learning is to train a model on a variety of tasks with rich annotations, such that it can solve a new task using only a few labeled samples. The key idea is to train the models initial parameters such that the model has maximal performance on a new task after the parameters have been updated through zero or a couple of gradient steps. There are already some surveys for meta-learning, such as (Vilalta and Drissi, 2002; Vanschoren, 2018; Hospedales et al., 2020). Nevertheless, this paper focuses on NLP domain, especially few-shot applications. We try to provide clearer definitions, progress summary and some common datasets of applying meta-learning to few-shot NLP.
Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architec tures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.
Pre-trained word embeddings are the primary method for transfer learning in several Natural Language Processing (NLP) tasks. Recent works have focused on using unsupervised techniques such as language modeling to obtain these embeddings. In contrast, this work focuses on extracting representations from multiple pre-trained supervised models, which enriches word embeddings with task and domain specific knowledge. Experiments performed in cross-task, cross-domain and cross-lingual settings indicate that such supervised embeddings are helpful, especially in the low-resource setting, but the extent of gains is dependent on the nature of the task and domain. We make our code publicly available.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا