ترغب بنشر مسار تعليمي؟ اضغط هنا

An Assertion language for slicing Constraint Logic Languages

133   0   0.0 ( 0 )
 نشر من قبل Carlos Olarte
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Constraint Logic Programming (CLP) is a language scheme for combining two declarative paradigms: constraint solving and logic programming. Concurrent Constraint Programming (CCP) is a declarative model for concurrency where agents interact by telling and asking constraints in a shared store. In a previous paper, we developed a framework for dynamic slicing of CCP where the user first identifies that a (partial) computation is wrong. Then, she marks (selects) some parts of the final state corresponding to the data (constraints) and processes that she wants to study more deeply. An automatic process of slicing begins, and the partial computation is depurated by removing irrelevant information. In this paper we give two major contributions. First, we extend the framework to CLP, thus generalizing the previous work. Second, we provide an assertion language suitable for both, CCP and CLP, which allows the user to specify some properties of the computations in her program. If a state in a computation does not satisfy an assertion then some wrong information is identified and an automatic slicing process can start. This way we make one step further towards automatizing the slicing process. We show that our framework can be integrated with the previous semi-automatic one, giving the user more choices and flexibility. We show by means of examples and experiments the usefulness of our approach.



قيم البحث

اقرأ أيضاً

Concurrent Constraint Programming (CCP) is a declarative model for concurrency where agents interact by telling and asking constraints (pieces of information) in a shared store. Some previous works have developed (approximated) declarative debuggers for CCP languages. However, the task of debugging concurrent programs remains difficult. In this paper we define a dynamic slicer for CCP and we show it to be a useful companion tool for the existing debugging techniques. Our technique starts by considering a partial computation (a trace) that shows the presence of bugs. Often, the quantity of information in such a trace is overwhelming, and the user gets easily lost, since she cannot focus on the sources of the bugs. Our slicer allows for marking part of the state of the computation and assists the user to eliminate most of the redundant information in order to highlight the errors. We show that this technique can be tailored to timed variants of CCP. We also develop a prototypical implementation freely available for making experiments.
In the last decades much research effort has been devoted to extending the success of model checking from the traditional field of finite state machines and vario
The problem of model checking procedural programs has fostered much research towards the definition of temporal logics for reasoning on context-free structures. The most notable of such results are temporal logics on Nested Words, such as CaRet and N WTL. Recently, the logic OPTL was introduced, based on the class of Operator Precedence Languages (OPLs), more powerful than Nested Words. We define the new OPL-based logic POTL and prove its FO-completeness. POTL improves on NWTL by enabling the formulation of requirements involving pre/post-conditions, stack inspection, and others in the presence of exception-like constructs. It improves on OPTL too, which instead we show not to be FO-complete; it also allows to express more easily stack inspection and function-local properties. In a companion paper we report a model checking procedure for POTL and experimental results based on a prototype tool developed therefor. For completeness a short summary of this complementary result is provided in this paper too.
Proof assistants are important tools for teaching logic. We support this claim by discussing three formalizations in Isabelle/HOL used in a recent course on automated reasoning. The first is a formalization of System W (a system of classical proposit ional logic with only two primitive symbols), the second is the Natural Deduction Assistant (NaDeA), and the third is a one-sided sequent calculus that uses our Sequent Calculus Verifier (SeCaV). We describe each formalization in turn, concentrating on how we used them in our teaching, and commenting on features that are interesting or useful from a logic education perspective. In the conclusion, we reflect on the lessons learned and where they might lead us next.
This paper presents a logic language for expressing NP search and optimization problems. Specifically, first a language obtained by extending (positive) Datalog with intuitive and efficient constructs (namely, stratified negation, constraints and exc lusive disjunction) is introduced. Next, a further restricted language only using a restricted form of disjunction to define (non-deterministically) subsets (or partitions) of relations is investigated. This language, called NP Datalog, captures the power of Datalog with unstratified negation in expressing search and optimization problems. A system prototype implementing NP Datalog is presented. The system translates NP Datalog queries into OPL programs which are executed by the ILOG OPL Development Studio. Our proposal combines easy formulation of problems, expressed by means of a declarative logic language, with the efficiency of the ILOG System. Several experiments show the effectiveness of this approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا