ﻻ يوجد ملخص باللغة العربية
This paper presents a logic language for expressing NP search and optimization problems. Specifically, first a language obtained by extending (positive) Datalog with intuitive and efficient constructs (namely, stratified negation, constraints and exclusive disjunction) is introduced. Next, a further restricted language only using a restricted form of disjunction to define (non-deterministically) subsets (or partitions) of relations is investigated. This language, called NP Datalog, captures the power of Datalog with unstratified negation in expressing search and optimization problems. A system prototype implementing NP Datalog is presented. The system translates NP Datalog queries into OPL programs which are executed by the ILOG OPL Development Studio. Our proposal combines easy formulation of problems, expressed by means of a declarative logic language, with the efficiency of the ILOG System. Several experiments show the effectiveness of this approach.
It has been recently argued that adiabatic quantum optimization would fail in solving NP-complete problems because of the occurrence of exponentially small gaps due to crossing of local minima of the final Hamiltonian with its global minimum near the
Using the probability theory-based approach, this paper reveals the equivalence of an arbitrary NP-complete problem to a problem of checking whether a level set of a specifically constructed harmonic cost function (with all diagonal entries of its He
We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures equivalent to a Datalog program, in terms of an existential pebble game. We also show that for every class C of finite structures that can be expressed
In many binary classification applications such as disease diagnosis and spam detection, practitioners often face great needs to control type I errors (i.e., the conditional probability of misclassifying a class 0 observation as class 1) so that it r
We show the NP-completeness of the existential theory of term algebras with the Knuth-Bendix order by giving a nondeterministic polynomial-time algorithm for solving Knuth-Bendix ordering constraints.