ﻻ يوجد ملخص باللغة العربية
The Bouncy Particle Sampler is a Markov chain Monte Carlo method based on a nonreversible piecewise deterministic Markov process. In this scheme, a particle explores the state space of interest by evolving according to a linear dynamics which is altered by bouncing on the hyperplane tangent to the gradient of the negative log-target density at the arrival times of an inhomogeneous Poisson Process (PP) and by randomly perturbing its velocity at the arrival times of an homogeneous PP. Under regularity conditions, we show here that the process corresponding to the first component of the particle and its corresponding velocity converges weakly towards a Randomized Hamiltonian Monte Carlo (RHMC) process as the dimension of the ambient space goes to infinity. RHMC is another piecewise deterministic non-reversible Markov process where a Hamiltonian dynamics is altered at the arrival times of a homogeneous PP by randomly perturbing the momentum component. We then establish dimension-free convergence rates for RHMC for strongly log-concave targets with bounded Hessians using coupling ideas and hypocoercivity techniques.
Markov Chain Monte Carlo (MCMC) is a powerful method for drawing samples from non-standard probability distributions and is utilized across many fields and disciplines. Methods such as Metropolis-Adjusted Langevin (MALA) and Hamiltonian Monte Carlo (
We present a method for performing Hamiltonian Monte Carlo that largely eliminates sample rejection for typical hyperparameters. In situations that would normally lead to rejection, instead a longer trajectory is computed until a new state is reached
This position paper summarizes a recently developed research program focused on inference in the context of data centric science and engineering applications, and forecasts its trajectory forward over the next decade. Often one endeavours in this con
Markov chain Monte Carlo (MCMC) is one of the most useful approaches to scientific computing because of its flexible construction, ease of use and generality. Indeed, MCMC is indispensable for performing Bayesian analysis. Two critical questions that
Continuous time Hamiltonian Monte Carlo is introduced, as a powerful alternative to Markov chain Monte Carlo methods for continuous target distributions. The method is constructed in two steps: First Hamiltonian dynamics are chosen as the determinist