ترغب بنشر مسار تعليمي؟ اضغط هنا

Randomized multilevel Monte Carlo for embarrassingly parallel inference

162   0   0.0 ( 0 )
 نشر من قبل Kody Law
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This position paper summarizes a recently developed research program focused on inference in the context of data centric science and engineering applications, and forecasts its trajectory forward over the next decade. Often one endeavours in this context to learn complex systems in order to make more informed predictions and high stakes decisions under uncertainty. Some key challenges which must be met in this context are robustness, generalizability, and interpretability. The Bayesian framework addresses these three challenges, while bringing with it a fourth, undesirable feature: it is typically far more expensive than its deterministic counterparts. In the 21st century, and increasingly over the past decade, a growing number of methods have emerged which allow one to leverage cheap low-fidelity models in order to precondition algorithms for performing inference with more expensive models and make Bayesian inference tractable in the context of high-dimensional and expensive models. Notable examples are multilevel Monte Carlo (MLMC), multi-index Monte Carlo (MIMC), and their randomized counterparts (rMLMC), which are able to provably achieve a dimension-independent (including $infty-$dimension) canonical complexity rate with respect to mean squared error (MSE) of $1/$MSE. Some parallelizability is typically lost in an inference context, but recently this has been largely recovered via novel double randomization approaches. Such an approach delivers i.i.d. samples of quantities of interest which are unbiased with respect to the infinite resolution target distribution. Over the coming decade, this family of algorithms has the potential to transform data centric science and engineering, as well as classical machine learning applications such as deep learning, by scaling up and scaling out fully Bayesian inference.

قيم البحث

اقرأ أيضاً

215 - Ajay Jasra , Kody Law , 2017
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
We introduce an ensemble Markov chain Monte Carlo approach to sampling from a probability density with known likelihood. This method upgrades an underlying Markov chain by allowing an ensemble of such chains to interact via a process in which one cha ins state is cloned as anothers is deleted. This effective teleportation of states can overcome issues of metastability in the underlying chain, as the scheme enjoys rapid mixing once the modes of the target density have been populated. We derive a mean-field limit for the evolution of the ensemble. We analyze the global and local convergence of this mean-field limit, showing asymptotic convergence independent of the spectral gap of the underlying Markov chain, and moreover we interpret the limiting evolution as a gradient flow. We explain how interaction can be applied selectively to a subset of state variables in order to maintain advantage on very high-dimensional problems. Finally we present the application of our methodology to Bayesian hyperparameter estimation for Gaussian process regression.
Inspired by recent progress in quantum algorithms for ordinary and partial differential equations, we study quantum algorithms for stochastic differential equations (SDEs). Firstly we provide a quantum algorithm that gives a quadratic speed-up for mu ltilevel Monte Carlo methods in a general setting. As applications, we apply it to compute expectation values determined by classical solutions of SDEs, with improved dependence on precision. We demonstrate the use of this algorithm in a variety of applications arising in mathematical finance, such as the Black-Scholes and Local Volatility models, and Greeks. We also provide a quantum algorithm based on sublinear binomial sampling for the binomial option pricing model with the same improvement.
Deterministic interpolation and quadrature methods are often unsuitable to address Bayesian inverse problems depending on computationally expensive forward mathematical models. While interpolation may give precise posterior approximations, determinis tic quadrature is usually unable to efficiently investigate an informative and thus concentrated likelihood. This leads to a large number of required expensive evaluations of the mathematical model. To overcome these challenges, we formulate and test a multilevel adaptive sparse Leja algorithm. At each level, adaptive sparse grid interpolation and quadrature are used to approximate the posterior and perform all quadrature operations, respectively. Specifically, our algorithm uses coarse discretizations of the underlying mathematical model to investigate the parameter space and to identify areas of high posterior probability. Adaptive sparse grid algorithms are then used to place points in these areas, and ignore other areas of small posterior probability. The points are weighted Leja points. As the model discretization is coarse, the construction of the sparse grid is computationally efficient. On this sparse grid, the posterior measure can be approximated accurately with few expensive, fine model discretizations. The efficiency of the algorithm can be enhanced further by exploiting more than two discretization levels. We apply the proposed multilevel adaptive sparse Leja algorithm in numerical experiments involving elliptic inverse problems in 2D and 3D space, in which we compare it with Markov chain Monte Carlo sampling and a standard multilevel approximation.
We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui, Law, Marzouk, 2016) and the multilevel MCMC (Dodwell et al., 2015) to explore the hierarchy of posterior distributions. This integration offers severa l advantages: First, DILI-MCMC employs an intrinsic likelihood-informed subspace (LIS) (Cui et al., 2014) -- which involves a number of forward and adjoint model simulations -- to design accelerated operator-weighted proposals. By exploiting the multilevel structure of the discretised parameters and discretised forward models, we design a Rayleigh-Ritz procedure to significantly reduce the computational effort in building the LIS and operating with DILI proposals. Second, the resulting DILI-MCMC can drastically improve the sampling efficiency of MCMC at each level, and hence reduce the integration error of the multilevel algorithm for fixed CPU time. To be able to fully exploit the power of multilevel MCMC and to reduce the dependencies of samples on different levels for a parallel implementation, we also suggest a new pooling strategy for allocating computational resources across different levels and constructing Markov chains at higher levels conditioned on those simulated on lower levels. Numerical results confirm the improved computational efficiency of the multilevel DILI approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا