ﻻ يوجد ملخص باللغة العربية
The evolution of porous structure and mechanical properties of binary glasses under tensile loading were examined using molecular dynamics simulations. We consider vitreous systems obtained in the process of phase separation after a rapid isochoric quench of a glass-forming liquid to a temperature below the glass transition. The porous structure in undeformed samples varies from a connected porous network to a random distribution of isolated pores upon increasing average glass density. We find that at small strain, the elastic modulus follows a power-law dependence on the average glass density and the pore size distribution remains nearly the same as in quiescent samples. Upon further loading, the pores become significantly deformed and coalesce into larger voids that leads to formation of system-spanning empty regions associated with breaking of the material.
The role of porous structure and glass density in response to compressive deformation of amorphous materials is investigated via molecular dynamics simulations. The disordered, porous structures were prepared by quenching a high-temperature binary mi
The time evolution of the pore size distributions and mechanical properties of amorphous solids at constant pressure is studied using molecular dynamics simulations. The porous glasses were initially prepared at constant volume conditions via a rapid
Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two papers on the origin of rigidity, wherein we propose that energetic rigidity, in which all non-trivial deformations raise the energy of a
We image local structural rearrangements in soft colloidal glasses under small periodic perturbations induced by thermal cycling. Local structural entropy $S_{2}$ positively correlates with observed rearrangements in colloidal glasses. The high $S_{2
We numerically study the evolution of the vibrational density of states $D(omega)$ of zero-temperature glasses when their kinetic stability is varied over an extremely broad range, ranging from poorly annealed glasses obtained by instantaneous quench