ﻻ يوجد ملخص باللغة العربية
We study a theory of massive tensor gravitons which predicts blue-tilted and largely amplified primordial gravitational waves. After inflation, while their mass is significant until it diminishes to a small value, gravitons are diluted as non-relativistic matter and hence their amplitude can be substantially amplified compared to the massless gravitons which decay as radiation. We show that such gravitational waves can be detected by interferometer experiments, even if their signal is not observed on the CMB scales.
We investigate the propagation of primordial gravitational waves within the context of the Horndeski theories, for this, we present a generalized transfer function quantifying the sub-horizon evolution of gravitational waves modes after they enter th
In this work we shall develop a quantitative approach for extracting predictions on the primordial gravitational waves energy spectrum for $f(R)$ gravity. We shall consider two distinct models which yield different phenomenology, one pure $f(R)$ grav
We consider the space-condensate inflation model to study the primordial gravitational waves generated in the early Universe. We calculate the energy spectrum of gravitational waves induced by the space-condensate inflation model for full frequency r
This is a summary of presentations delivered at the OC1 parallel session Primordial Gravitational Waves and the CMB of the 12th Marcel Grossmann meeting in Paris, July 2009. The reports and discussions demonstrated significant progress that was achie
We consider the gravitational radiation in conformal gravity theory. We perturb the metric from flat Mikowski space and obtain the wave equation after introducing the appropriate transformation for perturbation. We derive the effective energy-momentu