ﻻ يوجد ملخص باللغة العربية
In this work we shall develop a quantitative approach for extracting predictions on the primordial gravitational waves energy spectrum for $f(R)$ gravity. We shall consider two distinct models which yield different phenomenology, one pure $f(R)$ gravity model and one Chern-Simons corrected potential-less $k$-essence $f(R)$ gravity model in the presence of radiation and non-relativistic perfect matter fluids. The two $f(R)$ gravity models were carefully chosen in order for them to describe in a unified way inflation and the dark energy era, in both cases viable and compatible with the latest Planck data. Also both models mimic the $Lambda$-Cold-Dark-Matter model and specifically the pure $f(R)$ model only at late times, but the Chern-Simons $k$-essence model during the whole evolution of the model up to the radiation domination era. In addition they guarantee a smooth transition from the inflationary era to the radiation, matter domination and subsequently to the dark energy era. Using a WKB approach introduced in the relevant literature by Nishizawa, we derive formulas depending on the redshift that yield the modified gravity effect, quantified by a multiplicative factor, a ``damping in front of the General Relativistic waveform. In order to calculate the effect of the modified gravity, which is the ``damping factor, we solve numerically the Friedmann equations using appropriate initial conditions and by introducing specific statefinder quantities. As we show, the pure $f(R)$ gravity gravitational wave energy spectrum is slightly enhanced, but it remains well below the sensitivity curves of future gravitational waves experiments. In contrast, the Chern-Simons $k$-essence $f(R)$ gravity model gravitational wave energy spectrum is significantly enhanced and two signals are predicted which can be verified by future gravitational wave experiments.
We point out that there are only three polarizations for gravitational waves in $f(R)$ gravity, and the polarization due to the massive scalar mode is a mix of the pure longitudinal and transverse breathing polarization. The classification of the six
We discuss the scalar mode of gravitational waves emerging in the context of $F(R)$ gravity by taking into account the chameleon mechanism. Assuming a toy model with a specific matter distribution to reproduce the environment of detection experiment
We investigate the propagation of primordial gravitational waves within the context of the Horndeski theories, for this, we present a generalized transfer function quantifying the sub-horizon evolution of gravitational waves modes after they enter th
We study a theory of massive tensor gravitons which predicts blue-tilted and largely amplified primordial gravitational waves. After inflation, while their mass is significant until it diminishes to a small value, gravitons are diluted as non-relativ
The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in $f(R)$ grav