ﻻ يوجد ملخص باللغة العربية
Methods for generating sequences of surrogates approximating fine scale models of two-phase random heterogeneous media are presented that are designed to adaptively control the modeling error in key quantities of interest (QoIs). For specificity, the base models considered involve stochastic partial differential equations characterizing, for example, steady-state heat conduction in random heterogeneous materials and stochastic elastostatics problems in linear elasticity. The adaptive process involves generating a sequence of surrogate models defined on a partition of the solution domain into regular subdomains and then, based on estimates of the error in the QoIs, assigning homogenized effective material properties to some subdomains and full random fine scale properties to others, to control the error so as to meet a preset tolerance. New model-based Multilevel Monte Carlo (mbMLMC) methods are presented that exploit the adaptive sequencing and are designed to reduce variances and thereby accelerate convergence of Monte Carlo sampling. Estimates of cost and mean squared error of the method are presented. The results of several numerical experiments are discussed that confirm that substantial saving in computer costs can be realized through the use of controlled surrogate models and the associated mbMLMC algorithms.
We propose a novel $hp$-multilevel Monte Carlo method for the quantification of uncertainties in the compressible Navier-Stokes equations, using the Discontinuous Galerkin method as deterministic solver. The multilevel approach exploits hierarchies o
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization
We address the approximation of functionals depending on a system of particles, described by stochastic differential equations (SDEs), in the mean-field limit when the number of particles approaches infinity. This problem is equivalent to estimating
Stochastic PDE eigenvalue problems often arise in the field of uncertainty quantification, whereby one seeks to quantify the uncertainty in an eigenvalue, or its eigenfunction. In this paper we present an efficient multilevel quasi-Monte Carlo (MLQMC
In this article, a new unified duality theory is developed for Petrov-Galerkin finite element methods. This novel theory is then used to motivate goal-oriented adaptive mesh refinement strategies for use with discontinuous Petrov-Galerkin (DPG) metho